A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Lyme disease is the most commonly-reported vector-borne disease in North America. The causative agent, Borrelia burgdorferi is a spirochete bacterium transmitted by Ixodid ticks. Transmission and detection of infection in animal models is optimized by the use of tick feeding, which we describe here.
Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.
In 2011, Lyme disease was the 6th most common Nationally Notifiable disease in North America (http://www.cdc.gov/lyme/stats/index.html). B. burgdorferi is a versatile microbe, both genetically and antigenically (reviewed in 1). Its genetic constitution includes a large (>900 kB) chromosome and up to 21 plasmids (12 linear, 9 circular), with plasmid content varying among isolates. Much is to be learned about this spirochete, as over 90% of the plasmid open reading frames are unrelated to any known bacterial sequences 2,3 . B. burgdorferi presents a wide variety of antigens as potential targets of host immunity. However, an untreated infection often persists. The interaction of spirochetes with the tick milieu and the vertebrate host environment necessitates adaptation by B. burgdorferi throughout the infection process. Several plasmid-encoded genes are known to be differentially expressed in response to changes in temperature, pH, cell density and even stage of the tick life cycle 4-8.
The study of B. burgdorferi adaptation throughout its enzootic cycle, and host responses following infection by the natural route relies on the ability to feed ticks on appropriate animal models. Such studies are met with the technical challenges of generating ticks that harbor B. burgdorferi, and ensuring the efficient transmission and/or feeding of ticks on the model host. In addition, the containment and recovery of infected ticks is essential. Among the models used are mice and nonhuman primates, each of which serves as a valuable tool in Lyme disease research. As with the white-footed mouse, which is a natural reservoir host for B. burgdorferi, the laboratory mouse is a highly susceptible host that supports persistent infection by B. burgdorferi 9. Following infection of disease-susceptible mice, such as the C3H strain, the spirochetes disseminate to multiple tissues, including the skin, bladder, muscles, joints and heart. Inflammatory responses to the infection lead to diseased heart and joint tissue. While the spirochetes persist in this host and remain infectious, inflammatory lesions may become intermittent, not unlike the process in humans. The mouse model has thus provided much information on B. burgdorferi-induced pathology, including arthritis and carditis and host immune responses 10-12. From the perspective of the pathogen, certain genes differentially expressed during mammalian infection have been characterized, as have some necessary for transmission from the tick vector 13-21.
Though several animal species have been used to study Lyme disease 22, rhesus macaques most closely mimic the multi-organ character of human disease 23. Unlike other animal models, the breadth of disease manifestations such as erythema migrans, carditis, arthritis, and neuropathy of the peripheral and central nervous systems are observed in macaques. In mice, the reservoir host for B. burgdorferi, disease varies by mouse strain and age 24, while the early and late-disseminated manifestations are uncommon 9. In addition, other rodents, lagomorphs, and canines all fail to exhibit neurological disease from B. burgdorferi infection 25. Importantly, macaques exhibit signs that are characteristic of all three phases of Lyme borreliosis, namely, early-localized, early-disseminated, and late-stage Lyme disease 26-28. Erythema migrans (EM) is thought to occur in 70-80% of human cases 29, and is also seen in rhesus macaques 28,30 . Following infection, the spirochetes disseminate from the site of inoculation to multiple organs. Spirochetal DNA has been detected in skeletal muscles, heart, bladder, peripheral nerve and plexus, as well as in the central nervous system (cerebrum, brainstem and cerebellum, spinal cord, and dura mater) 31.
Tick feeding on mice has been utilized by us and other research teams for propagation of tick colonies, in reservoir competence studies 32-36 and in studies of B. burgdorferi pathogenesis 37-40. This technique has also been used for xenodiagnosis and testing of vaccine efficacy in mice 41-44. We have fed Ixodes ticks on nonhuman primates for model development 28, a study of vaccine efficacy 45, and for xenodiagnosis in the assessment of persistence post-antibiotic treatment 46. Ticks that harbor B. burgdorferi can be maintained in a natural enzootic cycle by feeding larvae on infected mice and using the nymphs for studies, as the spirochetes are transmitted through the life stages. In this report, we instruct on how to generate ticks infected with wild type or mutant B. burgdorferi, using capillary tube-feeding. This can also be accomplished by microinjection 47 and by immersion 48. The purpose of artificial introduction of B. burgdorferi into ticks can be to study mutant strains whose transmissibility is unknown, to generate a group of ticks with a high infection rate, and to reduce potential for error by maintaining a clean and otherwise uninfected tick colony. In addition, we demonstrate tick feeding on mice and nonhuman primates, so as to assure containment and recovery of replete ticks. The use of tick feeding is essential for future studies of immune responses to B. burgdorferi infection, potential Lyme vaccine efficacy, and xenodiagnosis for detection of occult infections.
An experimental outline of tick inoculation and feeding upon animals for Lyme disease research is depicted in Figure 1.
1. Inoculating Nymphal Ixodes Ticks with B. burgdorferi Using Capillary Tube-feeding
When performing manipulations with ticks, white lab coats with elastic sleeves, gloves, and disposable bouffant caps are worn.
2. Infecting Mice with B. burgdorferi by Tick
3. Feeding Ticks on Nonhuman Primates for Infection with B. burgdorferi or xenodiagnosis
Note: Oftentimes, the containment device can simply be peeled away from the skin. If adhesion is strong and could potentially damage the skin, Unisolve solvent is applied to the area for gentle removal. The skin is wiped with isopropanol and ticks are stored at 23 °C. If used for infection, the ticks can be crushed to confirm the number that contained B. burgdorferi. If used for xenodiagnosis, the ticks are kept for 1-3 weeks prior to analysis of midgut contents.
Following the completion of capillary feeding, the ticks are typically rested at 23 °C for 2-3 weeks before they are fed on animals for transmission. Using the capillary-feeding technique, we have found that over 90% of the fed ticks harbor B. burgdorferi. The percentage of positive ticks is determined by washing ticks in peroxide and ethanol, then crushing them in sterile PBS with a microfuge tube-shaped pestle. The midgut contents spilled into the PBS are fixed on slides and stained with an anti-Borrel...
In order to obtain ticks that harbor B. burgdorferi for downstream studies, the ticks can be: (1) fed on infected mice at the larval stage; (2) immersed in B. burgdorferi cultures at either the larval or nymphal stage 48; (3) microinjected with B. burgdorferi 47; or (4) capillary tube-fed B. burgdorferi 49. While each of these methods has its purpose, for ensuring that a large portion of the ticks to be used for infection harbor B. burgdorferi,...
The authors declare that they have no competing financial interests.
The authors wish to thank Nicole Hasenkampf and Amanda Tardo for technical support. We also thank Drs. Linden Hu and Adriana Marques for recommendation of the LeFlap containment device, and Dr. Lise Gern for instruction on the capillary feeding method. This work was supported by NIH/NCRR Grant 8 P20 GM103458-09 (MEE) and by the National Center for Research Resources and the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health through grant P51OD011104/P51RR000164.
Name | Company | Catalog Number | Comments |
Reagent | |||
BSK-H | Sigma | B-8291 | |
Ketamine HCl | |||
Tangle Trap coating Paste | Ladd research | T-131 | |
SkinPrep | Allegro Medical Supplies | 177364 | |
LeFlap, 3" x 3" | Monarch Labs | ||
Hypafix tape | Allegro Medical Supplies | 191523 | |
SkinBond | Allegro Medical Supplies | 554536 | |
UniSolve | Allegro Medical Supplies | 176640 | |
Biatane Foam, adhesive 4"x4" | Coloplast | 3420 | |
DuoDerm CGF Dressing - 4" x 4", (3/4)" adhesive border | Convatec | 187971 | |
Nonhuman primate jackets with flexible 2" back panels; add drawstrings at top and bottom | Lomir Biomedical Inc. | ||
EQUIPMENT | |||
Pipet puller | David Kopf Instruments | Model 700C | |
Dark field microscope | Leitz Wetzlar | Dialux | |
Dissecting microscope | Leica | Zoom 2000 | |
Mouse caging | Allentown caging |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved