A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
نقدم نظام ًا قويًا وقابلًا للنقل وتنبؤيًا في المختبر لفحص ورصد الجسيمات المحمولة جواً فيما يتعلق بسميتها الرئوية الرئوية الحادة من خلال تعريض خلايا الرئة البشرية المزروعة في واجهة الهواء السائل (ALI).
هنا ، نقدم نظام ًا نمطيًا مصممًا خصيصًا في المختبر يتيح التعرض المتجانس لخلايا الرئة البشرية المزروعة في ALI للغازات أو الجسيمات أو الأجواء المعقدة (مثل دخان السجائر) ، مما يوفر واقعية فسيولوجية التعرض للسطح apical من منطقة السنخية الإنسان إلى الهواء. وعلى النقيض من نماذج التعرض المتتابعة مع توجيه الهباء الجوي الخطي، فإن التصميم المعياري لنظام التدفق الشعاعي يفي بجميع متطلبات التوليد المستمر ونقل الغلاف الجوي للاختبار إلى الخلايا، وتوزيع وترسب متجانسين الجسيمات والإزالة المستمرة للغلاف الجوي. تم تصميم طريقة التعرض هذه في المقام الأول لتعرض الخلايا للجسيمات المحمولة جواً، ولكن يمكن تكييفها مع تعرض الهباء الجوي السائل والغازات شديدة السمية والعدوانية اعتماداً على طريقة توليد الهباء الجوي ومواد وحدات التعرض .
وفي إطار دراسة التحقق التي أُنجزت مؤخراً، ثبت أن نظام التعرض هذا هو طريقة فحص قابلة للتحويل وقابلة للاستنساخ وتنبؤية للتقييم النوعي للسمية السيسارية الحادة للجسيمات المحمولة جواً، وبالتالي يحتمل أن تقلل أو تحل محل التجارب الحيوانية التي من شأنها أن توفر عادة هذا التقييم السمية.
استنشاق الجسيمات السامة المحمولة جوا هو مصدر قلق الصحة العامة، مما يؤدي إلى العديد من المخاطر الصحية في جميع أنحاء العالم وعدة ملايين من الوفيات سنويا1،2. وقد ساهم تغير المناخ والتنمية الصناعية الجارية والطلب المتزايد على الطاقة والمنتجات الزراعية والاستهلاكية في زيادة الأمراض الرئوية خلال السنواتالماضية3و4و5و6. توفر المعرفة والتقييم للمواد القابلة للاستنشاق فيما يتعلق بسميتها الحادة عن طريق الاستنشاق الأساس لتقييم المخاطر وإدارة المخاطر، ولكن هذه المعلومات لا تزال غير موجودة لمجموعة واسعة من هذه المواد7و8. ومنذ عام 2006، يشترط التشريع الكيميائي للاتحاد الأوروبي REACH (تسجيل المواد الكيميائية وتقييمها والإذن بها وتقييدها) أن تخضع المنتجات الموجودة بالفعل والجديدة لتوصيف سمي بما في ذلك طريق الاستنشاق قبل طرحها في السوق. ولذلك ، يركز REACH على الأساليب البديلة والخالية من الحيوانات ، وتنفيذ مبدأ "3R" (استبدال ، وصقل ، والحد من التجارب الحيوانية) واستخدام النماذج المناسبة في المختبر9. في السنوات الأخيرة ، تم تطوير العديد من نماذج اختبار سمية الاستنشاق غير الحيوانية المختلفة والكافية (على سبيل المثال ، في زراعة الخلايا المختبرية ، ونماذج الرئة على رقاقة ، وشرائح الرئة الدقيقة (PCLS)) من أجل تقييم سمية الاستنشاق الحاد للجسيمات المحمولةجوا5،7،10،11. من حيث نماذج زراعة الخلايا المختبرية ، يمكن كشف الخلايا المزروعة تحت ظروف مغمورة أو في ALI(الشكل 1). غير أن صحة دراسات التعرض المغمورة محدودة فيما يتعلق بتقييم سمية المركبات المحمولة جواً ولا سيما الجسيمات. تقنيات التعرض المغمورة لا تتوافق مع الإنسان في حالة الجسم الحي; قد تؤثر وسط ثقافة الخلية التي تغطي الخلايا على الخصائص الفيزيائية الكيميائية وبالتالي ، فإن الخصائص السامة لمادة الاختبار12،13. تسمح نماذج استنشاق الخلايا في المختبر بالتعرض المباشر للخلايا للمواد الاختبارية دون تدخل وسط ثقافة الخلية مع جزيئات الاختبار ، وبالتالي ، تحاكي التعرض البشري بتشابه فسيولوجي وبيولوجي أعلى من التعرض المغمور12،14.
أما بالنسبة للعمليات التنظيمية مثل REACH، فإن النماذج الحيوانية فقط هي المتاحة في مجال علم السموم الاستنشاقي الحاد، حيث لم يتم التحقق من صحة أي طرق بديلة في المختبر بشكل كاف ٍ وقبولها رسمياً حتى الآن14. ولهذا الغرض، يجب التحقق من صحة نماذج الاختبار وفقاً لمتطلبات المختبر المرجعي للاتحاد الأوروبي لبدائل اختبار الحيوانات (EURL-ECVAM) بشأن صلاحية الاختبار15.
أثبتت دراسة سابقة قبل التحقق ودراسة التحقق التي تم الانتهاء منها مؤخرًا بنجاح مجال تطبيق نظام التعرض لـ CULTEX RFS وقابليته للنقل والاستقرار وقابلية التكاثر13. نظام التعرّض هذا هو نظام تعرض للخلايا في المختبر يمكّن من تعرض الخلايا المتجانس للغازات أو الجسيمات أو الأجواء المعقدة (مثل دخان السجائر) في ALI بسبب مفهوم توزيع الهباء الجوي الشعاعي والتوصيل للرذاذ الاختباري في تدفق مستمر فوق الخلايا16. تتكون الوحدة الأساسية لنظام التدفق الشعاعي هذا من محول الدخول ، ووحدة توجيه الهباء الجوي مع توزيع الهباء الجوي الشعاعي ، ووحدة أخذ العينات والمقبس ، ووحدة تأمين مع عجلة اليد(الشكل 2). تصل الجسيمات المولدة إلى الخلايا عبر محول المنافذ ووحدة توجيه الهباء الجوي ويتم إيداعها على إدراجات زراعة الخلايا ، والتي تقع في غرف التعرض الثلاث مرتبة شعاعيًا لوحدة أخذ العينات. يمكن تسخين وحدة توجيه الهباء الجوي وكذلك وحدة أخذ العينات عن طريق الاتصال بحمام مائي خارجي17.
وفي إطار كلتا الدراستين، استُخدمت خلايا A549 في جميع تجارب التعرض. خط الخلية A549 هو خط خلية ظهارية خالدة الإنسان الذي هو جيد التوصيف جدا، وقد استخدمت كنموذج في المختبر للخلايا الظهارية من النوع الثاني السنخية في العديد من الدراسات السمية. تتميز الخلايا بأجسام lamellar ، وإنتاج السطحي وعدد من العوامل ذات الصلة بالالتهاب18. كما أنها تظهر خصائص الخلايا الظهارية الشعب الهوائية بسبب إنتاجها المخاط19. وعلاوة على ذلك، يمكن أن تكون مثقفة في ALI. على الرغم من أن هذا الخط الخلية هو نقص في بناء الاتصالات الخلية الخلية، وزراعة هذه الخلايا هو أكثر ملاءمة بكثير، وأقل تكلفة باهظة والنتائج المستمدة منها هي المانحة مستقلة بالمقارنة مع الخلايا الأولية20.
تم بذر خلايا A549 في 6 بئر إدراج الخلايا (غشاء PET، 4.67 سم2،حجم المسام 0.4 ملم) بكثافة 3.0 × 105 خلايا لكل إدراج وزرعت لمدة 24 ساعة في ظل ظروف مغمورة. ثم تم الكشف عن الخلايا في ثلاثة مختبرات مستقلة للهواء النقي وثلاث جرعات تعرض مختلفة (25 و50 و100 ميكروغرام/سم2)من 20 مادة اختبارية في نظام الاستجابة البيئية. وترتبط جرعة التعرض بوقت الترسيب مما يؤدي إلى معدل جسيمات ثابت يبلغ 25 ميكروغرام/سم2و50 ميكروغرام/سم2 و100 ميكروغرام/سم2 على الخلايا بعد 15 أو 30 أو 60 دقيقة على التوالي. ومع ذلك، لم يتم غسل الجسيمات المترسبة بعد الترسيب، ولكنها بقيت على الخلايا لمدة 24 ساعة. وكانت أوقات ترسب الجسيمات بالتالي 15 و30 و60 دقيقة، ولكن تعرض الخلايا استمر لمدة 24 ساعة في المجموع. تم تحديد معدل ترسب المواد الاختبارية في التجارب الأولية وفقا للأساليب السابقة17.
تم تقييم صلاحية الخلية كمؤشر للسمية بعد 24 ساعة من ترسب الجسيمات باستخدام جهاز تقييم قابلية صلاحية الخلية. وتم التركيز بشكل خاص على نوعية ضوابط الهواء النظيف، وتحسين وتحسين بروتوكول التعرض، وإمكانية الاستنساخ داخل المختبرات وفيما بينها، وإنشاء نموذج للتنبؤ. المواد التي أدت إلى انخفاض قدرة الخلية على البقاء أقل من 50٪ (PM 50٪) أو 75% (بعد الظهر 75%) وفي أي من جرعات التعرض الثلاث اعتُبرت ممارسة خطر استنشاق حاد. ثم تمت مقارنة النتائج بالبيانات الموجودة في الجسم الحي (استنادًا إلى دراسة واحدة موثوقة على الأقل وفقًا للدليل الاختباري لمنظمة التعاون الاقتصادي والتنمية (TG) 403 أو TG 43621،22) ، مما أدى إلى توافق عام بنسبة 85٪ ، مع خصوصية 83٪ وحساسية 88٪23.
وإلى جانب قياس صلاحية الخلية، يمكن تقييم نقاط النهاية الأخرى مثل إطلاق السيتوكين أو فحص خلية الخلايا أو سلامة الأغشية عن طريق فحص LDH ولكنها لم تكن مطلوبة لدراسة التحقق من الصحة. وهكذا، ثبت أن نظام التعرض (مثل نظام CULTEX RFS) هو نظام فحص تنبؤي للتقييم النوعي لسمية الاستنشاق الحادة للجسيمات المحمولة جواً التي تم اختبارها، مما يمثل طريقة بديلة واعدة لاختبار الحيوانات. ويوصى بالبروتوكول التالي لتجارب التعرض للجسيمات المحمولة جواً باستخدام نظام التعريض هذا.
ملاحظة: يغطي بروتوكول تجربة تعرض واحدة فترة ثلاثة أيام.
اليوم الأول
1- الاستعدادات العامة وزراعة الخلايا
ملاحظة: تم استخدام خط الخلية الظهارية للرئة البشرية A549 لتجارب التعرض. يجب التعامل مع الخلايا في ظروف معقمة. ويمكن استخدام خطوط الخلايا الأخرى التي هي مناسبة للزراعة في ALI.
2. التربسينة من الخلايا
3- تحديد رقم الخلية
ملاحظة: تم تحديد تركيز الخلية باستخدام عداد الخلية أو غرف العد.
4. البذر من الخلايا على الأغشية الدقيقة في إدراج ثقافة الخلية
ملاحظة: تم تجهيز نظام التعرض مع محولات خاصة لتمكين استخدام إدراج التجارية من موردين مختلفين وأحجام مختلفة. وبالنسبة لتجارب التعرض هذه، استُخدمت لوحات 6 آبار وإدراجات زراعة الخلايا المقابلة لها. ويتعين القيام بجميع خطوات العمل في ظل ظروف عقيمة.
5. الضغط على المواد الاختبارية
ملاحظة: تم الضغط على مواد الاختبار في كعك مسحوق باستخدام الصحافة الهيدروليكية التي يمكن التحكم فيها بالكامل. يمكن للحزمة الصحفية تطبيق قوة قصوى قدرها 18 كيلو طن ، والتي يتم عرضها كضغط الزيت الحالي (في شريط) من حزمة الصحافة. يجب تحديد الظروف الصحفية (الضغط الملح ، وقت الضغط) من مواد الاختبار غير المعروفة وتوصيفها في الاختبارات الأولية. اعتمادا على خصائص الصحافة من مادة، يمكن استخدام مختلف المعلمات الملحة وأنواع المكبس الملحة.
تنبيه: ارتداء معدات الحماية عند الضغط على المواد السامة أو الخطرة.
اليوم الثاني
6. تجميع نظام التعرض وربط المعدات الطرفية
ملاحظة: يتم توفير عرض أكثر تفصيلاً في الشكل 3والشكل التكميلي 2 والشكل التكميلي 3. تجميع كل من وحدات ومولد الهباء الجوي وفقا لتعليمات الشركة المصنعة.
7. التحضير للهواء النقي والتعرض للجسيمات
8. اختبار تسرب نظام التدفق الشعاعي
ملاحظة: يجب إجراء فحص التسرب تحت فراغ ولكلا الوحدتين (التعرض ووحدة الهواء النظيف) من أجل ضمان إعادة تجميع الوحدة بشكل صحيح.
9- توليد الهباء الجوي
10- تجارب التعرض
اليوم الثالث
11- قابلية الخلايا للحياة
ملاحظة: تم تحديد صلاحية الخلية بعد 24 ساعة من ترسب الجسيمات عن طريق قياس نشاط الميتوكوندريا باستخدام معينات WST-1. تم إجراء الوطبقاً للمحضر ة التصنيع. يمكن أيضًا تحديد صلاحية الخلية باستخدام اختبارات صلاحية الخلية الأخرى (على سبيل المثال، XTT).
12 - الإحصاءات
وRFS CULTEX هو وحدات مصممة خصيصا في نظام التعرض للأشعة الكفية التي تمكن من التعرض المباشر ومتجانسة من الخلايا في ALI. وفي إطار دراسة سابقة سابقة قبل التحقق، تم بنجاح إثبات التطبيق العام لنظام التعرض هذا وقابليته للتحويل والاستقرار وقابلية الاستنساخ. وفي مشروع بحثي حديث مولته ?...
وقد تم تطوير العديد من نماذج اختبار سمية الاستنشاق غير الحيوانية في السنوات الأخيرة من أجل الحصول على معلومات حول خطر الاستنشاق الحاد للجسيمات القابلة للاستنشاق والحد من التجارب على الحيوانات واستبدالها وفقًا لمبدأ 3R25.
من حيث نماذج زراعة الخلايا ، يمكن أن يتم...
المؤلفين AT, KG, AB, SH, HM, TG, HT و DS ليس لديهم ما يكشف. تنتج شركة Cultex Technology GmbH (مختبرات Cultex GmbH سابقاً) أدوات (على سبيل المثال، CULTEX RFS، CULTEX DG) المستخدمة في هذه المقالة. وكان NM موظف في مختبرات Cultex GmbH خلال هذه الدراسة. موافق هو موظف في Cultex التكنولوجيا GmbH (سابقا مختبرات Cultex GmbH). براءة البراءات PCT/EP2009/007054 للجهاز هو عقد من قبل مؤسس Cultex التكنولوجيا GmbH البروفيسور الدكتور أولريش مور (سابقا مختبرات Cultex GmbH).
وقد دعم هذا العمل من قبل وزارة التعليم والبحث الاتحادية الألمانية (Bundesministerium für Bildung und Forschung, BMBF, ألمانيا (المنحة 031A581, المشروع الفرعي A-D)) ومؤسسة البحوث الألمانية (Deutsche Forschungsgesellschaft, DFG, مجموعة التدريب البحثي GRK 2338).
Name | Company | Catalog Number | Comments |
Cells | |||
A549 | ATCC | CCL-185 | |
Cell culture medium and supplies | |||
DMEM | Biochrom, Berlin, Germany | FG 0415 | used as growth medium |
DMEM | Gibco-Invitrogen, Darmstadt, Germany | 22320 | used as exposure medium |
FBS superior | Biochrom, Berlin, Germany | S 0615 | |
Gentamycin (10mg/mL) | Biochrom, Berlin, Germany | A 2710 | |
HEPES 1M | Th. Geyer, Renningen, Germany | L 0180 | |
PBS | Biochrom, Berlin, Germany | L 1825 | |
Trypsin/EDTA (0.05%/0.02%) | Biochrom, Berlin, Germany | L 2143 | |
Cell culture material | |||
CASY Cups | Roche Diagnostic GmbH, Mannheim, Germany | REF 05651794 | |
Cell culture plates | Corning, Wiesbaden, Germany | 3516 | 6-well plates |
Corning Transwell cell culture inserts | Corning, Wiesbaden, Germany | 3450 | 24mm inserts; 6-well plates; 0.4 µm |
Chemicals | |||
CASYton | Roche Diagnostic GmbH, Mannheim, Germany | REF 05651808001 | |
Compressed Air (DIN EN 12021) | Linde Gas Therapeutics GmbH, Oberschleißheim, Germany | 2290152 | |
WST-1 | Abcam, Cambridge, United Kingdom | ab155902 | |
Instruments + equipment | |||
CASY Cell Counter | Schärfe System GmbH, Reutlingen, Germany | ||
Circulation thermostat | LAUDA, Lauda-Königshofen, Germany | Ecoline RE 100 | |
CULTEX HyP - Hydraulic Press | Cultex® Technology GmbH, Hannover, Gemany | ||
CULTEX insert sleeve | Cultex® Technology GmbH, Hannover, Gemany | ||
CULTEX RFS - Radial Flow System Type 2 (module for particle exposure) | Cultex® Technology GmbH, Hannover, Gemany | ||
CULTEX RFS - Radial Flow System Type 2 (module for clean air exposure) | Cultex® Technology GmbH, Hannover, Gemany | ||
CULTEX supply | |||
Flow controller 0-30 ml/min (IQ-Flow) | Bronkhorst Deutschland Nord GmbH | ||
Flow controller 0-1,5 l/min (EL-Flow) | Bronkhorst Deutschland Nord GmbH | ||
Filters (large) | Munktell & Filtrak GmbH, Sachsen, Germany | LP-050 | Munktell Sterile Filter; Particle retention efficiency > 99,999% |
Filters (small) | Parker Hannifin Corporation, Mainz, Germany | 9933-05-DQ | Balston disposable filter |
Medium pump | Cole-Parmer GmbH, Wertheim, Germany | Ismatec IPC High Precision Multichannel Dispenser | digital peristaltic pump |
Microplate Reader Infinite M200 Pro | Tecan Deutschland GmbH, Crailsheim, Germany | ||
Vakuum pump | KNF, Freiburg, Germany | N86 KT.18 | |
Vögtlin mass flow controller 0,2-10 l/min | TrigasFI GmbH | Vögtlin red-y compact regulator, Typ-Nr.: GCR-C3SA-BA20 | |
Water Bath | LAUDA, Lauda-Königshofen, Germany | Ecoline Staredition RE 104 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved