We describe a method of inducing hairy roots by Agrobacterium rhizogenes-mediated transformation in Tartary buckwheat (Fagopyrum tataricum). This can be used to investigate gene functions and production of secondary metabolites in Tartary buckwheat, be adopted for any genetic transformation, or used for other medicinal plants after improvement.
Presented here is a mild 3D printing technique driven by alternating viscous-inertial forces to enable the construction of hydrogel microcarriers. Homemade nozzles offer flexibility, allowing easy replacement for different materials and diameters. Cell binding microcarriers with a diameter of 50-500 µm can be obtained and collected for further culturing.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。