完整的DNA链可以在化石中找到,而科学家有时很难在实验室条件下保持RNA的完整性。 RNA和DNA之间的结构变异是其稳定性和寿命差异的基础。因为DNA是双链的,所以它本质上更稳定。 RNA的单链结构不太稳定,但也更灵活,可形成弱的内部键。此外,细胞中的大多数RNA相对较短,而DNA可长达2.5亿个核苷酸。 RNA在核糖的第二个碳上具有羟基,增加了糖 - 磷酸骨架断裂的可能性。
细胞可以利用RNA的不稳定性,调节其寿命和有效性。与不稳定的mRNAs转录本相比,更稳定的mRNAs可用于更长时间的翻译。细胞内的RNA结合蛋白(RBPs)在调节RNA稳定性中起着关键作用。RBPs可以与mRNAs的3非翻译区(UTR)中的特定序列(AUUUA)结合。有趣的是,AUUUA重复次数似乎以特定的方式吸收RBPs: 较少的重复次数吸收稳定的RBPs。几个重叠的重复导致不稳定RBPs的结合。所有的细胞都有一种叫做核糖核酸酶的酶,能分解核糖核酸。通常情况下,在细胞不再需要转录本之前,5的"帽"和多聚尾保护真核细胞的mRNA不被降解。
新兴的上转录组学研究旨在定义调节性mRNA修饰。最近,科学家发现甲基化在mRNA稳定性中起着重要作用。腺苷残基甲基化( m6A ) 似乎增加了mRNA的翻译和降解。 m6A 在应激反应、核输出和mRNA成熟中也有作用。改性尿嘧啶残基假尿苷的存在,似乎在RNA调控中也起着重要作用。
来自章节 14:
Now Playing
生物技术
32.9K Views
生物技术
162.9K Views
生物技术
122.2K Views
生物技术
75.1K Views
生物技术
70.2K Views
生物技术
52.2K Views
生物技术
62.4K Views
生物技术
20.8K Views
生物技术
55.6K Views
生物技术
30.6K Views
生物技术
25.7K Views
生物技术
48.1K Views
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。