登录

As cells progress into mitosis, the nuclear envelope breaks down, and the condensed chromosomes are exposed to the array of bipolar microtubules of the mitotic spindle. The kinetochore, a large, disc-shaped protein complex, is present at the centromere region of the sister chromatids and acts as a binding site for the microtubules. Usually, the plus-end of a single microtubule is embedded within the kinetochore. However, some kinetochores first establish lateral contact with the side-wall of a microtubule. Such laterally attached kinetochores move along the microtubule wall with the help of the motor proteins and eventually forming a stable head-on attachment with the plus-end of the microtubule. Initially, chromosomes may have a monotelic attachment, where only one sister kinetochore is attached to a single spindle pole, and the other sister kinetochore remains unattached to microtubules. Subsequently, the unattached sister kinetochore connects with the microtubule from the opposite spindle, resulting in an amphitelic attachment. Amphitelic attachment of the sister chromatids is a prerequisite for accurate segregation of the chromosomes.

The kinetochore-microtubule interaction can also result in incorrect attachments. A syntelic attachment is when both kinetochores of the sister chromatids attach to microtubules from the same spindle pole. A merotelic attachment forms when the microtubules from opposite poles bind to the same kinetochore. Syntelic and merotelic attachments result in chromosomal segregation errors and can be corrected by Aurora-B kinase-dependent mechanisms.

Once a single microtubule has established the correct head-on connection with the kinetochore, additional microtubules from the same spindle can bind to the kinetochore, resulting in the formation of a kinetochore fiber. Such kinetochore fibers can contain 10 to 40 microtubules in animal cells.

The correct microtubule-kinetochore binding generates tension within the kinetochore from opposing forces, where the sister-chromatid cohesive force resists the poleward pull along the microtubules. The kinetochore tension triggers an increase in microtubule-binding affinity, thereby locking the stable attachment in place and ensuring the biorientation of sister chromatids.

Tags

AttachmentSister ChromatidsMitosisNuclear EnvelopeChromosomesKinetochoreMicrotubulesBipolarPlus endLateral ContactStable AttachmentMonotelic AttachmentAmphitelic AttachmentSegregationSyntelic AttachmentMerotelic Attachment

来自章节 18:

article

Now Playing

18.9 : Attachment of Sister Chromatids

Cell Division

3.0K Views

article

18.1 : 有丝分裂和胞质分裂

Cell Division

20.3K Views

article

18.2 : 染色质结构的复制

Cell Division

5.2K Views

article

18.3 : 黏连蛋白

Cell Division

4.2K Views

article

18.4 : 凝聚素

Cell Division

3.2K Views

article

18.5 : 有丝分裂纺锤体

Cell Division

6.1K Views

article

18.6 : 中心体复制

Cell Division

3.8K Views

article

18.7 : 微管不稳定

Cell Division

4.9K Views

article

18.8 : 主轴组件

Cell Division

3.4K Views

article

18.10 : 作用在染色体上的力

Cell Division

3.2K Views

article

18.11 : 姐妹染色单体的分离

Cell Division

3.5K Views

article

18.12 : 主轴组件检查点

Cell Division

3.1K Views

article

18.13 : 后期 A 和 B

Cell Division

3.8K Views

article

18.14 : 收缩环

Cell Division

6.1K Views

article

18.15 : 确定细胞分裂平面

Cell Division

3.1K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。