登录

Carbon-13 is a naturally occurring NMR-active isotope of carbon with a low natural abundance of 1.1%. In contrast, carbon-12 is the most abundant isotope of carbon with zero nuclear spin. Therefore, it is NMR inactive. The gyromagnetic ratio of carbon-13 is smaller than that of protons. As a result, carbon-13 resonance is about 6000 times weaker than proton resonance. For a given magnetic field strength, the resonance frequency of carbon-13 is about one-fourth of the resonance frequency for protons.

The chemical shift range for carbon-13 is between 0‑220 ppm, a much larger range than in protons (0‑12ppm). Because of the broader chemical shift range, the non-equivalent carbons have distinct and well-resolved signals that do not overlap. Like proton chemical shifts, carbon-13 chemical shifts are affected by hybridization and magnetic anisotropy. However, the effect of electronegative substituents on carbon-13 chemical shifts is stronger than on proton chemical shifts because carbon-13 nuclei are directly attached to the electronegative substituents. In contrast, protons are separated from electron-withdrawing substituents by two bonds.

In the carbon-13 chemical shift scale, saturated carbons appear upfield near the TMS signal at zero ppm (0‑50 ppm), followed by alkynes and those attached to electronegative substituents (50‑100 ppm). Unsaturated and aromatic carbons appear further downfield (100‑150 ppm), followed by highly deshielded carbonyl carbons (150-220 ppm).

Tags

来自章节 8:

article

Now Playing

8.21 : Carbon-13 (¹³C) NMR: Overview

Interpreting Nuclear Magnetic Resonance Spectra

5.3K Views

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

532 Views

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Views

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Views

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Views

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

998 Views

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Views

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Views

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Views

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Views

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Views

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Views

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Views

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

835 Views

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

899 Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。