登录

The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of electromagnetic waves in the laboratory. Starting in 1887, he performed a series of experiments that confirmed the existence of electromagnetic waves and verified that they travel at the speed of light. Hertz used an alternating-current RLC (resistor-inductor-capacitor) circuit that resonated at a known frequency and connected it to a loop of wire. High voltages induced across the gap in the loop produced sparks that were visible evidence of the current in the circuit and helped generate electromagnetic waves. Across the laboratory, Hertz placed another loop attached to another RLC circuit, which could be tuned (like a dial on a radio) to the same resonant frequency as the first and could thus be made to receive electromagnetic waves. The spark was generated in the receiver loop, indicating that electromagnetic waves travel toward the receiver loop. Hertz also studied the reflection, refraction, and interference patterns of electromagnetic waves, confirming their wave characteristics. Hertz was able to determine the wavelengths from the interference patterns, and by knowing their frequencies, the propagation speed was calculated using the equation v = . Hertz was thus able to prove that electromagnetic waves travel at the speed of light. The SI unit for frequency, the Hertz (1 Hz = 1 cycle/second), is named in his honor.

Tags
Heinrich HertzElectromagnetic WavesRLC CircuitAlternating CurrentWave CharacteristicsSpeed Of LightFrequencyInterference PatternsReflectionRefractionElectromagnetic RadiationSI UnitPropagation Speed

来自章节 33:

article

Now Playing

33.2 : Generating Electromagnetic Radiations

Electromagnetic Waves

2.1K Views

article

33.1 : Electromagnetic Waves

Electromagnetic Waves

8.1K Views

article

33.3 : The Electromagnetic Spectrum

Electromagnetic Waves

11.6K Views

article

33.4 : Electromagnetic Wave Equation

Electromagnetic Waves

851 Views

article

33.5 : Plane Electromagnetic Waves I

Electromagnetic Waves

3.3K Views

article

33.6 : Plane Electromagnetic Waves II

Electromagnetic Waves

2.9K Views

article

33.7 : Propagation Speed of Electromagnetic Waves

Electromagnetic Waves

3.2K Views

article

33.8 : Electromagnetic Waves in Matter

Electromagnetic Waves

2.8K Views

article

33.9 : Energy Carried By Electromagnetic Waves

Electromagnetic Waves

2.7K Views

article

33.10 : Intensity Of Electromagnetic Waves

Electromagnetic Waves

4.1K Views

article

33.11 : Momentum And Radiation Pressure

Electromagnetic Waves

1.8K Views

article

33.12 : Radiation Pressure: Problem Solving

Electromagnetic Waves

218 Views

article

33.13 : Standing Electromagnetic Waves

Electromagnetic Waves

1.2K Views

article

33.14 : Standing Waves in a Cavity

Electromagnetic Waves

702 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。