登录

Oxidative reactions are pivotal in metabolizing numerous compounds, including pharmaceutical drugs. These reactions often occur in carbon-heteroatom systems, such as carbon-nitrogen, carbon-sulfur, and carbon-oxygen.

In carbon-nitrogen systems, aliphatic and aromatic amines can undergo oxidative reactions. Secondary and tertiary amines, like those found in tricyclic antidepressants, can undergo N-dealkylation, a process that involves the oxidation of the alkyl group. In addition, oxidative deamination can occur, resulting in the formation of simpler amines, such as amphetamine.

Additional transformations can also occur, such as N-oxide formation in basic nitrogen atoms and N-hydroxylation in non-basic nitrogen atoms or those lacking an α-hydrogen.

Carbon-sulfur systems can undergo processes like S-dealkylation, S-alkylation, desulphurization, and S-oxidation. Sulphonamides and thiols, commonly found in various drugs, typically undergo these reactions. In contrast, carbon-oxygen systems predominantly undergo O-dealkylation. A classic example of a drug undergoing this type of reaction is codeine.

In addition to these specific reactions, there are also miscellaneous oxidative reactions. For example, reductive dehalogenation can occur in fluorocarbons like halothane, and the reduction of sulfur-containing groups can be seen in drugs like disulfiram. Understanding these complex biochemical reactions is critical in the pharmaceutical industry. Researchers and healthcare professionals can design and administer safer and more effective therapies by understanding how different compounds interact with the body's metabolic processes.

Tags

Phase I ReactionsOxidative ReactionsCarbon heteroatom SystemsCarbon nitrogen SystemsAliphatic AminesN dealkylationOxidative DeaminationCarbon sulfur SystemsS oxidationSulphonamidesO dealkylationCodeineMiscellaneous Oxidative ReactionsReductive DehalogenationPharmaceutical Industry

来自章节 5:

article

Now Playing

5.4 : Phase I Reactions: Oxidation of Carbon-Heteroatom and Miscellaneous Systems

Pharmacokinetics: Drug Biotransformation

44 Views

article

5.1 : Drug Biotransformation: Overview

Pharmacokinetics: Drug Biotransformation

127 Views

article

5.2 : Phase I Oxidative Reactions: Overview

Pharmacokinetics: Drug Biotransformation

209 Views

article

5.3 : Phase I Reactions: Oxidation of Aliphatic and Aromatic Carbon-Containing Systems

Pharmacokinetics: Drug Biotransformation

106 Views

article

5.5 : Phase I Reactions: Reductive Reactions

Pharmacokinetics: Drug Biotransformation

151 Views

article

5.6 : Phase I Reactions: Hydrolytic Reactions

Pharmacokinetics: Drug Biotransformation

39 Views

article

5.7 : Phase II Conjugation Reactions: Overview

Pharmacokinetics: Drug Biotransformation

93 Views

article

5.8 : Phase II Reactions: Glucuronidation

Pharmacokinetics: Drug Biotransformation

118 Views

article

5.9 : Phase II Reactions: Sulfation and Conjugation with α-Amino Acids

Pharmacokinetics: Drug Biotransformation

99 Views

article

5.10 : Phase II Reactions: Glutathione Conjugation and Mercapturic Acid Formation

Pharmacokinetics: Drug Biotransformation

83 Views

article

5.11 : Phase II Reactions: Acetylation Reactions

Pharmacokinetics: Drug Biotransformation

103 Views

article

5.12 : Phase II Reactions: Methylation Reactions

Pharmacokinetics: Drug Biotransformation

67 Views

article

5.13 : Phase II Reactions: Miscellaneous Conjugation Reactions

Pharmacokinetics: Drug Biotransformation

24 Views

article

5.14 : Factors Affecting Drug Biotransformation: Physicochemical and Chemical Properties of Drugs

Pharmacokinetics: Drug Biotransformation

101 Views

article

5.15 : Factors Affecting Drug Biotransformation: Biological

Pharmacokinetics: Drug Biotransformation

65 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。