Method Article
我们目前的图灵握手测试,通过telerobotic系统中,读写器是拿着机器人的手写笔,与另一个党(人或人工)交互管理。我们使用一个被迫的选择方法,并为人工模式的相似性,一个人握手中提取的一种措施。
在图灵测试,一个计算机模型,被认为是“思考智能”,它可以产生答案,这是不是人类的区分。然而,这项测试是有限的机器智能的语言方面。大脑的一个突出功能是控制运动,运动的人的手是一个复杂的演示此功能。因此,我们提出一个图灵测试握手,机器马达的情报。我们通过telerobotic从事持有机器人与另一方(人类或人工)的手写笔和交互的任务系统中,读写器的测试管理。而不是询问对方是否是一个人或一个计算机程序的审讯中,我们采用两个替代被迫选择方法,并要求两个系统更人性化。我们提取每个模型的定量等级,根据其与人握手的议案,它命名为“示范人似级”(MHLG)。我们介绍三种方法来估计MHLG。 (i)按比例计算的科目的答案,该模型是比人类更类似人类的;(二)通过比较两个加权总结人类和模式握手适合的心理曲线和提取的主观平等点(PSE );(三)通过给定的模型比较了人类和随机信号的加权总和,我们适合审讯的答案的心理曲线和提取的PSE为人类的加权总和重量。总之,我们提供了一个协议来测试计算模型的人握手。我们相信,建立一个模型,是了解任何现象的一个必要步骤,在这种情况下,在理解的神经机制负责的一代人的握手。
1。准备系统
图1。队在Python中的函数。一个握手的弹簧力模型的一个例子
2。实验协议
3。代表性的成果:
图2演示了3种方法的每一个题目的结果。在所有这三个实验的测试模型2粘弹性模型,KB1:弹簧K = 50 N / M,阻尼器乙= 2 NS / M; KB2:春天K = 20牛顿/米,阻尼B = 1.3纳秒/米。在加权模型的人体试验,MHLG W是评估每个测试模型通过比较K = 50 N / m的弹性示范基地
图2:两个粘弹性模型MHLG值根据的“纯粹”的测试协议(一),“加权模型人的协议”(二),并补充说:“噪音”协议(C) 。误差线(b)及(三)代表的“心理曲线的置信区间。黑网吧代表模型MHLG档次,和灰色条示范基地的代表在(b)和(c)中的噪声。
结果表明,粘弹性模型被认为是更喜欢使用所有三个评价方法比其他的粘弹性模型KB1人类KB2。
我们提出一个新的协议,通过一个简单的telerobotic系统管理的一个被迫选择图灵握手测试。此协议是一个比较人工握手模式,而不是一个平台,为确定人类绝对肖像平台。此协议是在2-5几个会议提出
在这里我们已经表明,这个测试是在寻找运动的被动特性,提供最人性般的感觉参数很有帮助。它可以用来进一步研究,以制定一个握手将尽可能与人类类似的模型。我们将采用这个平台http://www.bgu.ac.il/〜akarniel /握手/ index.html的 ],竞争车型将在第一图灵握手,比赛将在2011年夏天的地方[分级为他们的人类肖像。终极模式也许应该考虑人类阻抗21日 ,与读写器和许多其他人的自然握手,应进行测试和使用这个图灵被迫选择像握手测试排名方面的相互适应的非线性和时变性质。
建议的测试是一维,并通过一个telerobotic接口进行的,因此是有限的:它隐藏了许多方面的触觉信息,温度,水分和把握力,如握手。然而,在几个研究telerobotic接口用于探索“ 握手 6-11”和其他形式的人际的互动12。此外,在这个版本的测试中,我们没有考虑之前和之后的身体接触握手,启动和释放时间,其多面性和手轨迹的时间。 13-14人,因此,性别和文化上取决于握手也有多种类型,不能指望以产生一个单一的最优与人类类似的握手模式。不过,我们相信,建议测试的简单性是一个优势,至少在这个研究的初步阶段,。一旦这种一维握手的主要功能是正确的特点,我们可以考虑这些限制,并相应地延长测试。
应该指出的握手图灵测试计算机,而不是被人问对方的身份,可以逆转。在此框架下,我们认为以下的反向握手假说:握手的目的是探测动摇的手;根据反向握手假说,最佳的握手算法 - 在某种意义上说,它会从一个人握手区别 - 最有效地促进人与机器之间的歧视。换句话说,该模型将产生最佳的握手等,适当调整分类可以区分人类和机器的握手。
如果反向握手假说确实是正确的,它产生了我们的测试的临床应用:确定人患有各种神经马达相关的疾病,如脑性麻痹(CP),电机障碍。以往的研究表明执行达到运动15-16时的CP患者和正常人之间的运动学参数的差异。我们最近发现,运动健康与CP的个人和个人之间的特点晃动手中通过telerobotic系统4时有所不同。这些结果加强了我们的索赔电机障碍的人可以从健康的人区分开来研究和探索的每一个人握手运动。我们还应该注意,这里讨论的测试是一个感性的测试,最近的研究区分的感知和行动17-20。未来的研究应探讨三个版本的测试,以准确地评估了与人类类似的握手的性质:(1)感知的相似性的心理测试(2)电机行为测试(motormetric测试),将探讨电机读写器可能不同于他/她的认知感知的相似性反应;(3)最终的最佳鉴别试图区分的力量和位置轨迹为基础的人力和机握手。
总体而言,我们主张,了解电机控制系统,是为了解大脑功能的必要条件,并证明这样的认识,可以通过建设一个人形机器人,从一个人没有什么区别。目前的研究侧重于通过telerobotic制度的握手。我们断言,排名当时提出的图灵测试握手,我们人类的手部动作控制性质的科学假说应该能够提取人类的马达控制或显着的属性至少需要建立一个人造的附属物,是从一个人的手臂无异的突出特性。
AK希望感谢了有益的讨论有关建议图灵握手测试格里勒布。 AK和IN要感谢纳撒尼尔莱博维茨和利奥尔Botzer本协议于2007年回的第一个版本的设计作出了贡献。这项研究是由以色列科学基金会(批准号:1018年至1008年)的支持。 SL是由Kreitman基金会博士后奖学金的支持。在Kreitman基础和Clore奖学金计划的支持。
Name | Company | Catalog Number | Comments |
Two PHANTOM desktop robots | SensAble, Geomagic | 2 Parallel cards Minimum system requirements: Intel or AMD-based PCs; Windows 2000/XP, 250 MB of disc space | |
SensAble technologies Drivers | SensAble, Geomagic | http://www.sensable.com | |
H3DAPI source code | H3DAPI | http://www.h3dapi.org/modules/mediawiki/index.php/H3DAPI_Installation | |
Python 2.5 | Python Products | http://www.python.org/download/releases/2.5.5/ | |
x3d codes | |||
psignifit toolbox version 2.5.6 | Matlab | http://www.bootstrap-software.org/psignifit/ |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。