JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Potentiation of the startle reflex is measured via electromyography of the orbicularis oculi muscle during low (uncertain) and high (certain) probability electric shock threat in the Threat Probability Task. This provides an objective measure of distinct negative emotional states (fear/anxiety) for research on psychopathology, substance use/abuse, and broad affective science.

摘要

某些威胁和焦虑不确定威胁的恐惧是不同的情感与独特的行为,认知,注意力和神经解剖学的组件。既焦虑和恐惧可以通过测量惊跳反射的增强作用进行了研究,在实验室。惊跳反射是当一个有机体受到威胁和需要防御很高,得到增强防御反射。惊跳反射是通过肌电图(EMG)的眼轮匝肌进行了简短的,激烈的,声阵阵白噪声( "不惊人死不休探测器")的诱发评估。惊吓增效的计算公式为展示套视觉威胁线索的信号传递温和的电击相对于套匹配线索信号没有冲击(无威胁线索)的过程中增加了惊吓反应幅度。在威胁概率任务,怕是通过惊吓增效,以很高的概率(100%扣队伍冲击测量; certai不确定的)威胁线索,n)的威胁线索,而焦虑是通过惊吓增效,以低概率(20%扣队伍冲击测量。惊吓增效的威胁概率任务过程中的测量提供了一个客观的,容易实现的替代方案的评估,通过自我报告或其他方法( 例如 ,神经影像学检查),可能是不恰当的或不切实际的一些研究人员的负面影响。惊吓增效经过严格的研究在动物( 例如 ,啮齿动物,非人类灵长类动物)和人类这有利于动物到人类的转化研究。在确定与不确定的威胁惊吓增效提供了一个客观的衡量消极的情感和独特的情感状态(恐惧,焦虑),以研究在精神病理学,药物使用/滥用和广泛的情感科学使用。因此,它已被广泛兴趣在精神病理病因临床科学家和感兴趣的INDIVI情感科学家双重差异的情感。

引言

威胁概率任务的总体目标是通过实验解开应对低概率( 不确定性)威胁的恐惧反应概率高( 一定的)威胁的焦虑的表情。当威胁某些方面是定义不清发生​​的不确定性。而焦虑能够以多种方式进行说明,而加剧响应低概率或其他不确定负面事件是一个显着的临床症状在焦虑症1,2。此外,增加焦虑相关的生理过程中的冲击不明朗的威胁与恐惧有关的生理过程中的冲击一定的威胁实验室的任务可能会提供一个生理标志为焦虑症3响应响应。抑制焦虑不确定的威胁,特别是可能是应激反应抑制药物如酒精4-7性能的一个重要组成部分。在UNC增加焦虑ERTAIN威胁可能标志着大脑的压力下电路长期用药4,8àneuroadaptation。因此,威胁概率任务提供了消极的情感和独特的情感状态(焦虑,恐惧)在研究精神病理学使用,药物使用/滥用和情感的科学客观的衡量。因此,它可以是一个强大的工具,供有兴趣的精神病理病因和情感个体差异临床上和情感上的科学家。

用于研究的人类情感传统方法

情感科学家们使用了许多措施和范式来研究人类的情感9,但其中大部分都不能提供的威胁概率任务中来解析其他负面情绪焦虑必要的精度,如恐惧。例如,自报是常用的,但它可能会受到需求的特点和其他形式的反应偏差的。参加者可能不ABLE要焦虑和恐惧,他们的报告,底层神经生物学机制的连接准确区分是远端的最好的。此外,自我报告必须经常进行追溯自反省和报告的过程中可能会以其他方式改变的情感刺激参与者的经验。当然,回顾性报告患有记忆干扰和退化。 Psychophysiologists通常衡量一个影响操作,涉及到演示文稿的情感动人画面10时的情绪。这张照片查看任务很好的验证,较少受自我报告的不足之处,并导致有关的情感反应的个体差异及其对精神病理学11,12贡献了许多重要见解。然而,只有广泛的负面影响是这幅画查看任务不允许对不同的负面情绪,如焦虑和恐惧在研究过程中测量whicH可与威胁概率任务来测量。期间引起的负面影响,但这些方法可能是太昂贵了许多研究工作中的情感神经科学家经常测量功能性磁共振成像(fMRI)技术。此外,功能磁共振成像方法的空间分辨率和时间分辨率,目前有限的,难以让fMRI来解开认为与焦虑相对于其他情绪相关的神经结构。更重要的是,任何类型的负的良好定义的fMRI指数影响也尚未确立。

翻译研究与利用的惊吓反应的动物

与动物提供了从恐惧焦虑理清所需要的精度的第一个例子的基础研究之后,威胁概率任务为蓝本。神经科学家已经使用小心控制病变的研究与啮齿动物模型的焦虑和恐惧使用差分应对不确定性和certa触电的线索威胁。这项工作阐明,以低概率,含糊不清的,远端或其他不确定休克焦虑相关的反应的重要差异与恐惧有关的反应极有可能,明确的规定,即将一定的冲击13。不确定的威胁,引起冻结和动物过度警觉,而某些威胁引发主动回避,防御攻击,或两者14。迫在眉睫,一定威胁注意力集中在威胁自己,而远,时间上不确定的威胁,鼓励分散关注整体环境15 - 17。响应时间不确定的威胁似乎被持续的,而响应于某些威胁是相位和时间锁定到的威胁13。在相关的工作中,病变的研究表明,响应于不确定的威胁是由促肾上腺皮质激素释放因子和去甲肾上腺素途径通过横向选择性地介杏仁核的中央核和终纹18的床细胞核分裂。大部分工作使用的听觉惊恐反应作为主要取决于测量13,这是在威胁概率任务中使用的相同依赖性度量的增强作用。惊跳响应电路的神经生物学衬底已被广泛研究以明确连接的发现,以积极应对不确定和某些威胁19,20的脑部结构。惊吓反应可以在许多物种提供了强大的翻译工具,研究情绪进行评估。在人类的惊吓反应条件反射发生反应突然激烈的听觉刺激。惊跳是最经常被放置在眼睛的眼轮匝肌(盖关闭)肌肉肌电图(EMG)电极来测量在人。当一个生物体呈现恐吓stimul惊人死不休的相关肌电活​​动得到增强我们如即将发生的电击相对于无威胁的刺激19。

无冲击,可预见的冲击,不可预知的冲击(NPU)的任务和威胁的不确定性

威胁概率任务是由Grillon和同事的启发,当这些研究人员推出了采用惊吓增效的学习焦虑和恐惧的人与无冲击,可预见的冲击,不可预知的冲击(NPU)任务21。在西工大任务的可预测的情况下,冲击是100%的线索队伍,发生在一个一致的,已知的时间(简要提示呈现结束)。在西工大任务的不可预知的情况下,震荡是完全不可预测的。患者创伤后应激和恐慌症期间不可预测的,但不可预测的冲击,在西工大任务22,23表现出选择性增加惊跳增强作用。在其他工作中,药物处方来治疗焦虑症有惊吓potentiati的影响更大在不可预知的冲击比预测的冲击,在西工大任务24时期间。在酒精的抗焦虑作用的研究,莫葛博士和科廷科技大学4所使用的西工大任务来表明中等剂量的酒精选择性降低时不可预知的,但不可预测的冲击的威胁惊吓增效。不确定因素是多方面的,在西工大任务的不可预知条件下的冲击是不确定的问候双方如果他们出现(概率的不确定性), 它们发生(时间不确定)。许多理论认为,不确定性的WHEN尺寸生产的焦虑19的关键。然而,从科廷科技大学 5数据表明一个共同的机制,在不同类型的不确定性的焦虑启发。这里所描述的威胁概率任务操纵有关如果在持有的不确定性的所有其他方面不变从而清楚会发生震动的不确定性什么方面的不确定性是负责该任务呈现效果。使用不惊人死不休增效来威胁线索的任务是灵活的,还可以通过情感的科学家修改操作有关,其中冲击将要发生的25和多么糟糕,他们将7,26的不确定性。所有这些任务的,威胁概率的任务是最简单的,由于不确定性的一个方面,最简单的实现来解释它的工作重心之一,由于其包含的只有两个威胁的不确定性变量(低概率,高冲击的概率)。

威胁概率任务

在威胁概率任务,参与者从阴极射线管(CRT)显示器坐在约1.5m。威胁线索都显示在监视器上,每次5秒,可变的持续时间ITI(范围= 15-20秒)。威胁线索被分成几组两个冲击威胁的条件和一个无威胁的情况(见图1)。在这两种威胁的条件下200毫秒时间震荡在4.5秒被送入提示呈现时代到参加者的手指。在100%的威胁概率条件下,冲击正在呈现每个线索的过程中传递。在20%的威胁概率条件下,冲击被介绍1,每5线索的过程中传递。与会者认为每个威胁概率条件下两套(15线索总量)。与会者还认为,两个中性集,信号没有威胁线索(无威胁的线索,线索15条记录)。在监视器上显示文本通知下一组类型的参与者。在显示屏的左上角的整组期间显示的标签的集合类型。不同颜色的线索被用来为每​​个条件,以便各组的参加者的意识。在整个任务中,刺激呈现程序提供了声惊吓探针的102分贝白噪声50毫秒脉冲的形式参加通过耳机提供近瞬时的上升时间。听觉惊恐探针在4秒内递送到线索的子集的呈现。额外探针递送在13秒和15秒后提示的工业培训期间偏移减小探针的可预测性。任何呈现视觉刺激之前,任务开始交付3听觉惊恐的探针主要任务测量之前立即,观察者的惊恐反应。研究者平衡以控制为习惯和致敏作用27,28跨学科内条件的听觉惊恐探针的序列位置。对于一个完全抵消一系列试验的威胁概率任务的一个例子见补充材料。

威胁概率任务已经用于证明低概率(不确定)单独休克是足以引起焦虑和允许的醇的抗焦虑作用的评估 6。与相关的大麻使用者的初步研究表明威胁概率任务,也可用于评估停药29的效果。因此,威胁概率任务提供了一个容易实现的,可以替代昂贵和不够精确的方法不同的负面情绪状态( 例如,焦虑和恐惧)的研究精神病理学,药物使用/滥用,和广泛的情感科学的客观的衡量标准。

Access restricted. Please log in or start a trial to view this content.

研究方案

当地伦理委员会已批准下列程序,谁曾在此过程中参与的所有参与者都给予知情同意书。对于心理生理测量和刺激呈现的更多细节,请参见30,27。

1,肌电图(EMG)记录准备

  1. 请参与者用肥皂彻底清洗面部,特别要注意目标传感器的位置,这是位于下方的一只眼睛,并在参与者的额头中间( 见图2)。
  2. 座位在实验室舒适的座椅直立的参与者。
  3. 准备参加者的皮肤肌电图测量。
    1. 清洁用酒精垫的目标传感器的位置。
    2. 用小纱布垫,以进一步去除污垢和死皮细胞,它可以阻碍测量Ø请用坚韧不拔的去角质凝胶的相同位置F表示肌电活动。
  4. 准备和附加肌电电极。
    1. 填用注射器和钝针所有银 - 氯化银(银 - 氯化银)传感器杯子的导电凝胶。
    2. 连接大( 例如,8毫米)银-氯化银传感器参与者的额头使用粘合剂领中心。
    3. 连接两个额外的小( 4毫米),银-氯化银下方的参与者的眼睛用胶粘剂衣领传感器。将第一,这些小的传感器在与光瞳在向前视线和第二传感器1-2厘米横向于所述第一线( 图2,参见27)。不要让粘合衣领重叠,因为这可能会增加运动伪影。防止凝胶溢出,以避免形成两个传感器眼睛下方之间的凝胶桥,因为这将导致电流通过桥流动并削弱EMG活动的测量。
  5. 开始对T肌电采集软件他生理电脑,并要求参与者闪烁了几下,以验证该肌电反应被记录正常,且眨眼可以将数据采集软件的显示屏上观察( 见图3A的肌电活动有关联的一个例子闪烁)。
  6. 检查每个传感器的阻抗。
    注:许多实验室需要低于10kΩ的阻抗(或更保守,5kΩ的),但实际可容许的阈值测量的阻抗水平取决于许多变量,如实验设计,放大器的设计和实际限制相对于时间的需要,以降低阻抗及参与人群。无论如何,高阻抗会增加肌电信号的易感性电气神器,这可能是有问题的(60 Hz的噪声, 见图3B)。
  7. 广场上的参与者的头耳机。

创2基线测量ERAL惊恐反应

注:该评估还有助于进一步的,观察者惊吓反应之前刚刚任务之前交付的3习惯探头启动31。包括一般的惊恐反应在惊吓增效的统计分析协变量增加统计力量在和参与者之间的效果检测。一般惊跳反应可能也反映了一个有趣的个体差异衡量12,32。

  1. 请参与者获取基线任务开始前舒适,并尽可能保持始终保持与他们的双脚平放在地板上的任务。参加运动可以引入神器成肌电信号( 见图3C)。
  2. 提醒他们可以在实验过程中的任何一点终止其参与的参与者。在这两种使用视频和音频饲料试验室监控参与者基线评估和主要任务。
  3. 保存肌电图信号采集软件的生理计算机并启动了刺激控制电脑上的刺激呈现软件。
  4. 呈现的参加者用一系列有色的正方形,将在主任务中使用,但还没有被配对的电击。这些线索的一个子集与线索之间的间隔期间存在不惊人死不休的探针。时序参数为时间线索,线索之间的时间间隔,以及惊人死不休的探针必须匹配的主要任务参数。一般的惊恐反应可靠的测量需要至少4个探头的呈现。这个基线任务大约需要5分钟才能完成。
  5. 平均起来参加的高峰肌电惊吓反应到每个探头吓一跳基线过程中,产生将作为该与会者的普遍惊恐反应一个值(参见步骤6.1-6.6如何处理肌电图的数据)。包括:一般的惊恐反应作为一种添加剂或涉及惊吓增效统计模型的交互式协(见步骤6.8)。

3,抗冲击性阈值评估

  1. 加盖标准的医用胶布2冲击电极参与者的手( 手食指和无名指末节指骨),33 - 35。
  2. 目前,参加了一系列的日益激烈电击。在每次冲击给药,要求参与者评价他们如何厌恶的发现震惊于100分。要求他们用0评级,如果他们不能感到震惊全中,50震撼,他们认为是不舒服的第一级评级,以及100的冲击,他们可以容忍的最高水平的评级。
  3. 指示,这是重要的,以精确地报告他们能容忍最高休克的参与者。参与者不应bê告知,他们的报告将影响他们获得的实际冲击,因为这可能会导致偏差在他们的报告。
  4. 停止防震能力评估,一旦参与者速率的冲击为100记录的震撼级和管理的冲击在这个级别的威胁概率任务,以控制震动敏感性的个体差异。
    注:电击是给予每个参与者的主观最大冲击耐受阈值。但是,较低强度的冲击也用21。无论如何,重要的是选择的震动强度是足以引起所有参与者健壮负情感反应和相关的惊跳增强作用。

4,威胁概率任务

  1. 提供一个封面故事,鼓励关注整个任务的参与者。
    注:某些参与者可能难以保持关注throughoUT斯达康的威胁概率任务。的封面文章,研究人员可以告诉与会者,以鼓励重视这项工作的一个例子是告诉参与者,研究人员有兴趣在一个简单的,重复性的视觉相似任务任务测量了参与者的关注随着时间的能力空中交通管制要求。
  2. 提供每个条件一般的任务信息和具体的线索冲击突发参与者。
    1. 指示该任务持续约20分钟的参与者。
    2. 指导这项任务包括持续5秒,平均每次相隔15-20秒线索参与者。
    3. 告知该线索组织成组,每个组各持续2-3分钟的参与者。
    4. 指示参与者,有三种类型的套,20%休克套,100%休克组和无休克集。
    5. 指导参与者,他们将收到冲击的端的约1每5线索在20%休克套和5每5线索在100%休克套。
    6. 确保他们不会收到任何冲击在任何时候在没有震动台或在任一台的线索(ITI)的发言之间的时间参加。
    7. 让参加者询问有关任务的问题在说明书的末尾。在此之后,问答,参与者,以确保他们完全理解了冲击不时之需。提醒他们可以在实验过程中的任何一点终止其参与的参与者。
  3. 保存肌电图信号采集软件的生理计算机和刺激控制计算机将控制任务的刺激上启动刺激呈现软件。
  4. 仔细监视参与者的自愿运动,闭眼,或过度不适。

5,后期实验

  1. 该提示的威胁任务后,管理一个调查问卷,参与者以确认威胁突发事件进行任务期间得到很好的理解。要求参与者评估他们如何焦虑或恐惧是当他们看到每个威胁提示以5点量表,从1(一点也不焦虑/恐惧)到5(非常焦虑/恐惧)。
    注意:使用两个单独的威胁任务的不确定性来自布拉德福德 7,25结果表明,导致自我报告的焦虑的密切配合是惊吓增效的格局。
  2. 汇报的参与者,补偿他们的时间,他们辞退。
  3. 清洗和消毒所有的传感器。

6,数据处理,还原与分析

注:研究人员可以完成数据处理和减少各种软件包。 EEGLAB 36是一个免费的,开源的工具箱内Matlab的<分析心理生理数据SUP> 37。对于数据处理和削减步骤的模板EEGLAB脚本请参阅补充材料。数据处理和减少遵循公布的指导方针27。对于未处理(生)连续肌电周边1惊吓探测信号的几秒钟的显示, 见图4A。

  1. 套用前后的高通滤波器(4 28 Hz的巴特沃斯滤波器),以原连续肌电图( 见图4A,B)。
  2. 整流滤波后连续肌电图(参见图4C)。
  3. 使用前后4 30 Hz的巴特沃斯低通滤波器平滑整流肌电图信号( 见图4D)。
  4. 划时代的平滑连续的信号,(-50到0毫​​秒)从整个epochedš保持周围的声惊吓探针发病和"基线正确"的epoched信号中减去预先探测基线的平均-50℃至250毫秒ignal( 见图4E)。
  5. 分数从每个时代为20和100毫秒后探头发病的最大响应惊吓反应( 见图4F)。
  6. 拒绝与过度的伪影的试验( 例如,过度的变形,在预探测基线,参见图5)。
    注意:信号包含在预先探测基线大于40μV的挠度可以被识别为伪像。
  7. 为每个任务状态中历元平均惊恐反应(无冲击,20%的冲击,100%休克)(参见图6A)。
    1. 计算惊跳增强作用不确定休克为平均惊恐反应之间的差异在20%的冲击线索惊跳探针无休克线索(参见图6B)。注:20%条件期间ITI探针惊跳反应也可以测量以研究预期的相关一些概念问题的效果和持续惊跳增效焦虑6,21 tualizations。
    2. 计算惊跳增强作用对某些休克为平均惊恐反应之间的差异,以在100%休克线索惊跳探针无休克线索(参见图6B)。
  8. 分析使用的是一般线性模型与工作条件和一般的惊吓反应(步骤2.5计算)作为添加剂或交互协32重复测量惊吓增效。

Access restricted. Please log in or start a trial to view this content.

结果

威胁概率任务均为100%(某些)概率和20%(不确定)的概率威胁线索( 图6B)时会产生强大的惊吓增效。不确定的(20%)威胁状况时使用此任务显示惊吓增效以前的结果,以上述概率高(100%)(一定的)威胁状况时的惊吓增效来显著增加。温和急性给药确实酒精(目标的0.08%血液中的酒精浓度)产生的惊吓增效过程中20%(不确定)的威胁与100%的(特定)威胁更大的选择性降?...

Access restricted. Please log in or start a trial to view this content.

讨论

威胁概率任务可用于通过评估惊跳增强作用,以低概率(不确定)和电击的概率很高(一定)的威胁来研究焦虑和恐惧的表达。在该任务中所使用的主要取决于测量和威胁意外事件可以与啮齿类,非人灵长类和人类中使用,因此,对于研究表达的负面影响13,18,40提供一种优异的平移工具。惊吓增效电击的威胁有明确的连接,防御系统激活,可耐意志控制,并有明确的神经生物学基板。这是...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors declare that they have no competing financial interests.

致谢

This research was supported by Grants R01AA15384 from the National Institute on Alcohol Abuse and Alcoholism and 5R01DA033809-02 from the National Institute of Drug Abuse to John J. Curtin.

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
AmplifierNumerous optionsSee Curtin, Lorenzo, and Allen (2007) for a list of vendors.
Small Ag/AgCl EMG Sensorsfigure-materials-249 Discount DisposablesTDE-023-Y-ZZ-S4 mm, and 48 in lead length
Large Ag/AgCl EMG sensorfigure-materials-479 Discount DisposablesTDE-022-Y-ZZ-S8 mm, and 48 in lead length
Small electrode collarsfigure-materials-708 Discount DisposablesTD-235 mm
Large electrode collarsfigure-materials-905 Discount DisposablesTD-228 mm
Shock boxCustomCustomSee supplemental material for a circuit diagram for the custom shock box used by the Curtin laboratory. An example of a commerical shock box can be found at: http://www.psychlab.com/stim_SHK_shockers.html.
Alcohol padsfigure-materials-1445 Fisher Scientific06-669-72
Exfoliant gelfigure-materials-1636 Weaver and CompanyNuPrep
Conductive Gelfigure-materials-1811 Electro-Cap InternationalECA E9
Gauze padsfigure-materials-1999 Neuromedical Supplies95000025
Blunt Needlefigure-materials-2177 Electro-Cap InternationalE8B
Medical tapefigure-materials-2364 Neuromedical Supplies95000032
Electrode Sterilizing Solutionfigure-materials-2554 Emergency Medical Products:MX-2800Gloves should be warn when handling metricide.
Headphonesfigure-materials-2782 Sennheiser4974Head phones should be capable of repeatedly delivering startle probe’s at the level chosen by experimenters (e.g.102 dB).
Participant monitoring camerafigure-materials-3109 PolarisUSABC-660BInfrared capable camera so participant can be monitored while lights are off in experiment room.
Infrared panelPolarisUSAIR-TILEhttp://www.polaris.com/en-us/home.aspx
Video monitor for participant monitoringfigure-materials-3545 Marshall ElectronicsM-Pro CCTV 19
Stimulus Computerfigure-materials-3725 DellDell Optiplex3010Most modern computers appropriate
Sound card (Stimulus computer)figure-materials-4003 Creative70SB127000002The sound card delivers the startle probes. An example of a stand alone noise generator can be found at: http://www.psychlab.com/stim_TG_WN_sound.html#.
I/O card (Stimulus computer)figure-materials-4432 Measurement ComputingPCI-DIO24I/O card allows control of shock box and communication of event markers (e.g. for startle probe occurrence) to data collection computer.
Stimulus control softwarefigure-materials-4770 PsychtoolboxOpen source (free) toolbox based in Matlab.
Computational platform for stimulus control and data reductionfigure-materials-5038 MathWorksRequired to use Psychtoolbox and EEGLAB (below).
Data collection computerfigure-materials-5249 DellDell Optiplex3010Most modern computers are appropriate
Psychophysiology acquisition softwareNumerous optionsSee Curtin, Lorenzo, and Allen (2007) for a list of vendors.
Stimulus Monitorfigure-materials-5641 AcerAcer AL1916W
Data Collection Monitorfigure-materials-5840 AcerAcer AL1916W
Participant CRT monitorfigure-materials-6017 ViewSonicP810
Data processing softwarefigure-materials-6192 EEGLABOpen source (free) software package based in Matlab.

参考文献

  1. Barlow, D. H. Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory. The American psychologist. 55 (11), 1247-1263 (2000).
  2. Boswell, J. F., Thompson-Hollands, J., Farchione, T. J., Barlow, D. H. Intolerance of uncertainty: A common factor in the treatment of emotional disorders. Journal of Clinical Psychology. 69 (6), 630-645 (2013).
  3. Grillon, C. Models and mechanisms of anxiety: evidence from startle studies. Psychopharmacology. 199 (3), 421-437 (2008).
  4. Moberg, C. A., Curtin, J. J. Alcohol selectively reduces anxiety but not fear: startle response during unpredictable vs. predictable threat. Journal of Abnormal Psychology. 118 (2), 335-347 (2009).
  5. Hefner, K. R., Moberg, C. A., Hachiya, L. Y., Curtin, J. J. Alcohol stress response dampening during imminent versus distal, uncertain threat. Journal of abnormal psychology. 122 (3), 756-769 (2013).
  6. Hefner, K. R., Curtin, J. J. Alcohol stress response dampening: Selective reduction of anxiety in the face of uncertain threat. Journal of Psychopharmacology (Oxford, England). 26 (2), 232-244 (2012).
  7. Bradford, D. E., Shapiro, B. L., Curtin, J. J. How bad could it be? Alcohol dampens stress responses to threat of uncertain intensity. Psychological science. 24 (12), 2541-2549 (2013).
  8. Koob, G. F., Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology Reviews. 35 (1), 217-238 (2010).
  9. Mauss, I. B., Robinson, M. D. Measures of emotion: A review. Cognition & emotion. 23 (2), 209-237 (2009).
  10. Lang, P. J., Bradley, M. M., Cuthbert, B. N. Emotion, attention, and the startle reflex. Psychological Review. 97 (3), 377-395 (1990).
  11. Lang, P. J. The emotion probe. Studies of motivation and attention. The American psychologist. 50 (5), 372-385 (1995).
  12. Vaidyanathan, U., Patrick, C. J., Cuthbert, B. N. Linking dimensional models of internalizing psychopathology to neurobiological systems: Affect-modulated startle as an indicator of fear and distress disorders and affiliated traits. Psychological bulletin. 135 (6), 909-942 (2009).
  13. Davis, M., Walker, D. L., Miles, L., Grillon, C. Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology Reviews. 35, 105-135 (2010).
  14. Blanchard, R. J., Blanchard, D. C. Attack and defense in rodents as ethoexperimental models for the study of emotion. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 13, S3-S14 (1989).
  15. Cornwell, B. R., Echiverri, A. M., Covington, M. F., Grillon, C. Modality-specific attention under imminent but not remote threat of shock: Evidence from differential prepulse inhibition of startle. Psychological Science. 19 (6), 622-6210 (2008).
  16. Fanselow, M. S., Lester, L. S. A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. Evolution and Learning. , 185-212 (1988).
  17. Mobbs, D., Petrovic, P., et al. When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science. 317 (5841), 1083-1010 (2007).
  18. Walker, D., Davis, M. Role of the extended amygdala in short-duration versus sustained fear: A tribute to Dr. Lennart Heimer. Brain Structure and Function. 213 (1-2), 29-42 (2008).
  19. Davis, M. Neural systems involved in fear and anxiety measured with fear-potentiated startle. American Psychologist. 61 (8), 741-756 (2006).
  20. Alvarez, R. P., Chen, G., Bodurka, J., Kaplan, R., Grillon, C. Phasic and sustained fear in humans elicits distinct patterns of brain activity. NeuroImage. 55 (1), 389-400 (2011).
  21. Schmitz, A., Grillon, C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nature Protocols. 7 (3), 527-532 (2012).
  22. Grillon, C., Lissek, S., Rabin, S., McDowell, D., Dvir, S., Pine, D. S. Increased anxiety during anticipation of unpredictable but not predictable aversive stimuli as a psychophysiologic marker of panic disorder. American Journal of Psychiatry. 165 (7), 898-904 (2008).
  23. Grillon, C., Pine, D. S., Lissek, S., Rabin, S., Bonne, O., Vythilingam, M. Increased anxiety during anticipation of unpredictable aversive stimuli in posttraumatic stress disorder but not in generalized anxiety disorder. Biological Psychiatry. 66 (1), 47-53 (2009).
  24. Grillon, C., Chavis, C., Covington, M. F., Pine, D. S. Two-week treatment with the selective serotonin reuptake inhibitor citalopram reduces contextual anxiety but not cued fear in healthy volunteers: A fear-potentiated startle study. Neuropsychopharmacology. 34 (4), 964-971 (2009).
  25. Alcohol induced stress neuroadaptation: Cross sectional evidence from startle potentiation and ERPs in healthy drinkers and abstinent alcoholics during uncertain threat. Bradford, D. E., Moberg, C. A., Starr, M. J., Motschman, C. A., Korhumel, R. A., Curtin, J. J. Society for Psychophysiological Research, Abstracts for the Fifty-Third Annual Meeting, Firenze Fiera Congress & Exhibition, Center, Florence, Italy, , (2013).
  26. Shankman, S. A., Robison-Andrew, E. J., Nelson, B. D., Altman, S. E., Campbell, M. L. Effects of predictability of shock timing and intensity on aversive responses. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology. 80 (2), 112-118 (2011).
  27. Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., van Boxtel, A. Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology. 42 (1), 1-15 (2005).
  28. Valsamis, B., Schmid, S. Habituation and prepulse inhibition of acoustic startle in rodents. Journal of visualized experiments: JoVE. (55), e3446(2011).
  29. Gloria, R. Uncovering a potential biological marker for marijuana withdrawal: Startle potentiation to threat. , University of Wisconsin-Madison. 70(2011).
  30. Curtin, J. J., Lozano, D., Allen, J. B. The psychophysiology laboratory. , Oxford University Press. New York. (2007).
  31. Lane, S. T., Franklin, J. C., Curran, P. J. Clarifying the nature of startle habituation using latent curve modeling. International journal of psychophysiology: official journal of the International Organization of Psychophysiology. 88 (1), 55-63 (2013).
  32. Bradford, D. E., Kaye, J. T., Curtin, J. J. Not just noise: individual differences in general startle reactivity predict startle response to uncertain and certain threat. Psychophysiology. 51 (5), 407-411 (2014).
  33. Curtin, J. J., Patrick, C. J., Lang, A. R., Cacioppo, J. T., Birbaumer, N. Alcohol affects emotion through cognition. Psychological Science. 12 (6), 527-531 (2001).
  34. Hogle, J. M., Kaye, J. T., Curtin, J. J. Nicotine withdrawal increases threat-induced anxiety but not fear: Neuroadaptation in human addiction. Biological Psychiatry. 68 (8), 687-688 (2010).
  35. Hogle, J. M., Curtin, J. J. Sex differences in negative affective response during nicotine withdrawal. Psychophysiology. 43 (4), 344-356 (2006).
  36. Delorme, A., Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods. 134 (1), 9-21 (2004).
  37. Statistics Toolbox. , The Mathworks Inc.. Natick, Massachusetts. (2013).
  38. Levenson, R., Sher, K., Grossman, L., Newman, J., Newlin, D. Alcohol and stress response dampening: Pharmacological effects, expectancy, and tension reduction. Journal of Abnormal Psychology. 89 (4), 528-538 (1980).
  39. Sher, K. J. Stress response dampening. Psychological Theories of Drinking and Alcoholism. , 227-271 (1987).
  40. Davis, M., Antoniadis, E., Amaral, D., Winslow, J. Acoustic startle reflex in rhesus monkeys: A review. Reviews in the Neurosciences. 19, 171-185 (2008).
  41. Grillon, C., Baas, J. P., Lissek, S., Smith, K., Milstein, J. Anxious responses to predictable and unpredictable aversive events. Behavioral Neuroscience. 118 (5), 916-924 (2004).
  42. Grillon, C., Baas, J. M. A review of the modulation of the startle reflex by affective states and its application in psychiatry. Clinical Neurophysiology. 144, 1557-1579 (2003).
  43. Shankman, S. A., Nelson, B. D., et al. A psychophysiological investigation of threat and reward sensitivity in individuals with panic disorder and/or major depressive disorder. Journal of abnormal psychology. 122 (2), 322-338 (2013).
  44. Moberg, C. A., Curtin, J. J. Stressing the importance of anxiety in alcoholism. Alcoholism: Clinical and Experimental Research. 36, 60A(2012).
  45. McTeague, L. M., Lang, P. J. The anxiety spectrum and the reflex physiology of defense: from circumscribed fear to broad distress. Depression and anxiety. 29 (4), 264-281 (2012).
  46. Mobbs, D., Marchant, J. L., et al. From Threat to Fear: The Neural Organization of Defensive Fear Systems in Humans. The Journal of Neuroscience. 29 (39), 12236-12243 (2009).
  47. Lissek, S., Bradford, D. E., et al. Neural substrates of classically conditioned fear-generalization in humans: a parametric fMRI study. Social cognitive and affective neuroscience. , (2013).
  48. Insel, T. Next-generation treatments for mental disorders. Science translational medicine. 4 (155), 155ps19(2012).
  49. Baker, T. B., Mermelstein, R., et al. New methods for tobacco dependence treatment research. Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine. 41 (2), 192-207 (2011).
  50. Lerman, C., LeSage, M. G., et al. Translational research in medication development for nicotine dependence. Nature Reviews. Drug Discovery. 6 (9), 746-762 (2007).
  51. Schmitz, A., Merikangas, K., Swendsen, H., Cui, L., Heaton, L., Grillon, C. Measuring anxious responses to predictable and unpredictable threat in children and adolescents. Journal of experimental child psychology. 110 (2), 159-170 (2011).
  52. Miller, M. W., Curtin, J. J., Patrick, C. J. A startle probe methodology for investigating the effects of active avoidance on negative emotional reactivity. Biological Psychology. 50, 235-257 (1999).
  53. Hawk, L. W., Cook, E. W. 3rd Affective modulation of tactile startle. Psychophysiology. 34 (1), 23-31 (1997).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

91

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。