JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • Erratum Notice
  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • Erratum
  • 转载和许可

Erratum Notice

Important: There has been an erratum issued for this article. Read More ...

摘要

使用该协议,我们能够从感染寄生虫弓形虫 ,使可视化和的encysting寄生虫和感染的神经元之间的空间关系分析的小鼠图像160微米厚的脑切片。

摘要

弓形虫是一种专性细胞内寄生虫具有广泛的宿主范围,包括人类和啮齿类动物。在人类和啮齿类动物, 弓形虫建立在大脑终身持续感染。虽然这种脑部感染是无症状的,在大多数人的免疫功能,在发育中的胎儿或免疫功能低下的个体如获得性免疫缺陷综合征(AIDS)患者,这种偏爱与执着在大脑中可能会导致灾难性的神经系统疾病。因此,很显然,献计弓形虫相互作用是由弓形虫产生的症状的疾病的关键,但我们对中枢神经系统(CNS)和寄生虫的细胞之间的细胞或分子的相互作用的了解甚少。在中枢神经系统的小鼠模型弓形体病已经知道了30多年的神经元中的寄生虫仍然存在的细胞,但信息很少哪些神经元的一部分,通常感染(体细胞,树枝状,轴突),如果菌株之间的这种蜂窝关系变化。在某种程度上,这是缺乏二次成像的难度,从动物整体可视化感染神经元。这些图像通常需要连续切片和组织通过电子显微镜或免疫染色后,激光共聚焦显微镜成像的拼接。通过组合多种技术,这里所描述的方法使得能够使用厚的切片(160微米),以确定和包含包囊图像的完整细胞,允许三维可视化和个人,慢性感染的神经元的分析,而不需要免疫染色,电子显微镜,或连续切片和拼接。使用这种技术,我们可以开始理解寄生虫和感染的神经元之间的蜂窝式关系。

引言

该方法的总的目标是要获得高的分辨率,被感染的专性细胞内寄生虫弓形虫单个神经元的三维图像。

弓形体通常被认为是由于其较大的中间宿主范围,包括人类和啮齿类动物中最成功的寄生虫之一。在人类和啮齿类动物,通过污染的食物或水摄入的急性感染后, 弓形虫能够通过从它的快速复制的形式(将速殖子)转化成其慢复制和encysting形式引起的中枢神经系统的持续性感染(在缓殖子)。在免疫活性个体,这种潜中枢神经系统感染被认为是相对无症状的,但在免疫受损的个体,如爱滋病患者或移植者,寄生虫的复发可导致致命弓形虫脑炎1,2。此外,最近的研究公顷已经表明,隐性感染弓形虫会导致行为的变化在啮齿类动物3,4,尽管机制仍不清楚。

令人惊讶的是,尽管这些数据突出了CNS- 弓形虫相互作用的重要性,相对知之甚少这种关系,特别是在细胞和分子水平。研究脑寄生虫互动,甚至简单的方面的能力受到了阻碍部分由TECHNOLOGIC限制。例如,大多数的工作表明神经元的细胞,其中包囊坚持已经完成,电子显微镜(EM)5,6。虽然EM提供高分辨率,这是费时,劳动强度大,而且价格昂贵。免疫荧光(IF)测定法最近已结合使用共聚焦显微镜来确认由EM 7所做的工作。中频测定在技术上易于实施和相对便宜的,但使用这些技术来underst和囊肿和感染的神经元之间的空间关系,需要串行重建,这是耗时的,在技术上困难,并且可能会导致有价值的信息丢失。因此,我们开发了可与中枢神经系统弓形虫病的小鼠模型中使用,并允许我们图像感染的神经元的全部未经EM或免疫组织化学(IHC)的方法。通过开发这样的技术,我们可以开始探索以相对快速和廉价的方式感染细胞和囊肿之间的蜂窝式关系。

我们开发的方法,结合了用于光学结算和成像厚脑切片通过共聚焦显微镜8较新的技术与系统,它标志着已经注射了寄生虫蛋白9,10 体内细胞。在这个系统中,我们感染表达绿色荧光蛋白(GFP)的Cre-报告小鼠仅后的Cre介导的重组11 弓形虫 表达红色荧光蛋白(RFP)和Cre重组酶注入到宿主细胞中的9株。这种组合可以让我们收获了感染小鼠的大脑后,中枢神经系统感染建立后,切成厚脑切片,并迅速查明相关领域的图像通过查找RFP +囊肿。要注意,作为绿色荧光蛋白的宿主细胞中表达完全取决于注射的Cre的寄生虫,而不是在感染,一些将GFP +细胞不含有寄生虫10是很重要的。作为该协议的目的是为了能够将图像的整体感染的神经元,重点是仅在GFP +神经元还含有RFP +囊肿,但该协议也可以用于图像的GFP + / RFP -神经元。

一旦感染脑收获并切片,该切片是由甘油结算呈现透明。部的适当的区域,然后用共焦显微镜,人成像感染的宿主细胞,并在其整体的成囊寄生虫降脂前所未有的可视化。在这里,我们提供了一个完整的协议识别,光学结算和成像感染神经元。

研究方案

注:小鼠饲养,并保持在一个温度和湿度控制的房间12小时逆转食物和水可用自由采食光/暗周期在亚利桑那大学。实验下的指引和亚利桑那大学的机构动物护理和使用委员会批准进行的。所作的所有努力,尽量减少痛苦。该Cre的报告小鼠是在C57BL / 6背景11和可商购。

1.鼠标感染

注:小鼠感染弓形虫下面所描述的方法已被用于在先前公布的10项研究- 12。

  1. 生长弓形虫菌株在人包皮成纤维细胞(HFFS)的Dulbecco氏高糖培养的改良的Eagles培养基(DMEM),补充有10%FBS,100U / ml青霉素,100mg / ml的链霉霉素,和2mM L-谷氨酰胺(cDMEM)的T-25烧瓶内的5%的CO 2培养箱中,直到寄生虫已形成大虫空泡。
  2. 通过从烧瓶底部刮的细胞和使所得到的溶液通过一个25号针头连接到3毫升注射器的2倍的烧瓶内,则所有溶液转移至5ml注射器壳体连接到27号针头的注射器释放寄生虫已被置于一个15毫升的锥形管内上下颠倒。柱塞连接到注射器,并通过该寄生虫溶液进入锥形管。
  3. 离心管在300×g下10分钟。吸出上清液,然后重悬沉淀在4-6毫升无菌USP级1×磷酸盐缓冲盐水(PBS)pH 7.4的(原液)。
  4. 装入10微升原液血球,等待5-10分钟的寄生虫定居然后计算寄生虫的数目,中间大正方形的四角和中心方块。
  5. 第稀网站的100K / 200微升合适的接种物大小的1X PBS,然后用200微升的总体积注射小鼠腹膜内(IP)。
    注:在此过程中,小鼠接种100K型III(CEP)13速殖子200μl的1X PBS。当感染小鼠弓形虫的其它菌株,接种体浓度可能需要进行调整以考虑毒力的水平。

2.灌注和脑收获

注意:此协议是第21天感染后(dpi)的进行,因为这代表了时间点被发现在小鼠大脑囊肿峰的数字,但也可以使用其它的时间点。大小,数量,位置,以及存在包囊的存在与否,取决于很多因素,包括小鼠品系,寄生虫菌株类型以及接种量7,14 - 17。研究者将需要单独确定合适的接种物为鼠标和Toxoplas马应变,他/她使用。

  1. 设置所有手术收获的工具( 图1)。
  2. 对于每个小鼠,制备并保持在冰上:20ml注射器填充有0.9%的氯化钠(NaCl)中+ 10单位/毫升肝素在1×无菌USP级的PBS(肝素/盐水); 20毫升注射器填充有4%多聚甲醛(PFA);闪烁小瓶用15毫升的4%的PFA。对于多个小鼠,制备填充有所需的所有小鼠,然后制定一个新鲜注射器充满每个灌注溶液各溶​​液的全部量的烧杯中。
  3. 麻醉小鼠IP用200μl/ 25克体重的氯胺酮/甲苯​​噻嗪混合物(24毫克/毫升与4.8毫克/毫升,分别)在感兴趣的日子。通过检查脚趾捏反射监视鼠标麻醉水平。继续协议只有一次鼠标显示了一个坚定的脚趾捏没有反应。
    注:如之前达到麻醉的适当水平的麻醉的其它方法也可以使用,只要在继续进行协议。
  4. 鼠标放置在有盖的泡沫平台上仰卧位。 PIN所有四肢出在脚上,然后喷洒胸部和腹部用70%乙醇(乙醇)( 图2A)。另外的鼠标下几个无菌纸巾可以用来帮助吸收灌注流体的溢出。
  5. 正下方用钳子胸骨抬起皮肤,然后用剪刀做一个切口。拉回来的皮肤暴露胸部( 图2B)。
  6. 提起剑突,使刚刚膈下腹部切口,暴露出这是钝性分离离膈肌肝脏。使两个切口,一个在左,一个在通过隔膜和右肋的底部。延伸的左,右的切口大约1 / 2-2 / 3的方式向上胸腔,然后将其反射回以打开胸腔( 图2C)。
    注意:小心不要削减任何器官或主要血管杜响此过程,因为这样做会损害灌注质量。
  7. 用10-20毫升肝素/盐其次是10-20毫升4%PFA灌注transcardially。
    注意:如果灌注得当,肝脏会从红色变成棕褐色( 图2D)。如果没有正确完成,血管将可见( 图2E)。
  8. 把鼠标放在其上腹部,重脚脚再喷头部和颈部用70%乙醇。从颈部的底座抬起皮肤,使一个切口。去除皮肤暴露的头骨( 图2F)。斩首头在肩的水平。取出颅骨,轻轻取出大脑,并放入闪烁瓶中装满4%PFA( 图2G-H)。
    注意:如果灌注良好,大脑会出现白色无可见的血管( 图2I)。如果大脑没有得到很好的灌注,血管就会可见( 图2J)。
  9. 将火花化小瓶大脑在4%PFA在4℃过夜,涵盖了从光。冲洗脑部非USP级1×PBS中,并转移到一个新的闪烁小瓶填充有冷却的1×PBS。存储大脑在1×PBS中,在4℃,涵盖了从光。
    注:成功清算和成像已经完成与存储在1×PBS中进行长达一个月的部分,但最好是部分在几天之内为长时间储存​​在PBS将扭转PFA固定和大脑可能导致低于最佳的图像。自体荧光和增加的模糊已注意到在一些路段储存后成像在1×PBS中一个月或更长的时间。

3.脑切片

  1. 从1 PBS取出大脑,并把它变成一个大脑基质( 图3A),以便更精确,通过大脑甚至削减。剪掉小脑和嗅球,如果存在的话,然后切成冠脑部成2个或3段。 注:切边和脑切割可以不经大脑基质的帮助完成。正在使用的切割冠将取决于的vibratome的切割距离段数。大脑可以分段在任何方向,虽然矢状面和冠状节最常用于神经解剖鉴定。
  2. 贴上各脑切片上与氰基丙烯酸酯样品安装块。加盖的背后支持的脑切片( 图3B)的5%琼脂糖凝胶的小块。
    注:其它支持机制都可以使用,但不提供支持,所述的vibratome可推动对脑造成不均匀的切片。
  3. 切割组织成厚的切片用的vibratome设置为4的速度和9振幅为160μm(用于成像物镜的工作距离)。
    注:在速度和幅度的设置可以根据特定的机器上进行调整所使用,以获得均匀,平滑的部分。如果设置不正确,结果可能是不均匀的部分,组织或振痕撕裂。
  4. 收集组织切片成闪烁小瓶填充有新鲜,冷冻的1×PBS,如果他们打算一个星期内,以被清除。如果段不打算在一周内被清除,放置部分成1.5ml微量管中填充有在-20℃冷冻保存液溶液和存储。

脑组织切片4.光学结算

注:此协议已被修改从先前公布的方法8。

  1. 在1×PBS + 2%吐温-20(GL / PBST)中制备25%,50%,75%和90%体积/体积甘油。
  2. 从1×PBS中移除部分,或者,如果在冷冻保存液,冲洗在1×PBS中并转移到含有10毫升25%的GL / PBST闪烁瓶中。地方小瓶在振荡器上在4℃下,盖从暴露于光,12小时。
  3. 确认所有部分已经沉没到微博TTOM小瓶。吸出25%的GL / PBST中,只留下足以覆盖部分然后填充在振荡器上在小瓶用10毫升50%的GL / PBST和地点在4℃下,盖从暴露于光,12小时。对于75%GL / PBST那么90%GL / PBST重复此过程。留在90%GL / PBST路段24小时达到最高结算。在结算过程中的过程中,逐步观察光透明( 图4)。
    注意:如果解决方案更改后立即路段已经沉没到小瓶的底部这个过程可能会加快。在75%与90%的溶液,部分不会下沉一路小瓶的底部,但将在中间浮动。

5.安装脑组织切片

  1. 切1.5号盖玻片到5个创建间隔。用尺子和金刚石尖铅笔得分和打破盖玻片沿图5A中所示的虚线。丢弃吨他围绕一块,安排4件外的一个普通的载玻片,以创建一个窗口,然后刷透明指甲油到接缝坚持间隔的碎片在正确的配置( 图5B)的幻灯片。
    注:该垫片将被用于创建载玻片和盖玻片用于安装清除部分之间的必要的空间。盖玻片可被切割以不同的方式来创建所需的任何尺寸的窗口。预切割泡沫衬垫也可商购。为了让指甲油完全干燥,最好是安装部分,至少提前一天进行幻灯片与垫片。
  2. 使用具有尖端的塑料移液管转移到节幻灯片切断。请务必填写周边地区有90%GL / PBST。小心地放下盖玻片在确保不引入任何气泡的部分。多余的GL / PBST可吸走了无绒擦拭。
  3. 图像GFP +含RFP元+ 弓形虫包囊用共聚焦显微镜立即( 图7A-B),然后存储幻灯片平坦和覆盖从光在4℃。
    注意:可替换地,密封滑动完全围绕所有边缘来存储和成像在以后的时间。使用的透明指甲油密封滑动是可选的,并且可以使之更难以除去盖玻片如果一个人以除去从滑动部分在稍后的日期,以便进一步处理。

6.成像

注意:任何显微镜,可以使用具有获得高解析度的z栈的能力。

  1. 在最初发现的焦平面的10倍,变为20倍的目标,并通过部分扫描识别位于GFP +细胞内囊肿。在视场中心的感兴趣区域(ROI)的区域。
  2. 更改为40X的目标。注重上下贯通整个投资回报率,以确保整个细胞和CYST是可见的。
    注:图片均使用共焦显微镜用40X / 1.30石油DIC M27目标获得。
  3. 使用安装的成像软件,得到Z堆叠包括与囊肿整个单元。用于获取图像的平均设置示于图6中
    注:设置可能需要根据每个研究者的组织切片和显微镜的能力进行调整。
  4. 由突起的数目设置为1。由突起的数目设定为64获得完整的旋转视图获取Z堆叠的最大投影图像。
    注:其它软件包可用,并且可以被用于获得最大突出,旋转以及Z堆叠图像的其它视图。
  5. 分析图像与图像分析软件。

结果

图7包括两个GFP +神经元从两个不同的160微米厚的切片,以及来自囊肿至细胞体为图7B的距离的代表测量结果。 含有囊肿-7的A和 B示出了这个新的代表图像协议允许在其全部被感染的神经元的可视化。 图7C示出了与该成像技术,现在有可能量化囊肿和胞体(了Imaris 7.7)之间的距离。 图7D的一个?...

讨论

由于在感染宿主细胞的细胞变化都与疾病结果在感染细胞内的其他生物如HIV,狂犬病,和衣原体18,19,我们开发出一种技术,使我们研究CNS之间发生亲密互动宿主细胞和弓形虫 。这里介绍的方法实现这一目标,通过使慢性感染神经细胞的有效成像。在此之前的方法的发展,这样的成像是耗时的,昂贵的,或者是不可能的。

现在,我们可以使用这种技术来回答有...

披露声明

作者什么都没有透露。

致谢

我们感谢整个Koshy实验室进行有益的讨论。我们感谢侯佩岑Jansma和亚利桑那州神经科学系的大学征求意见,并与成像帮助。我们也感谢波雷卡实验室使用他们的vibratome的。这项研究是由健康的美国国家研究院​​(NIH NS065116,AAK)的支持。

材料

NameCompanyCatalog NumberComments
Vibratome Series 1000 Sectioning SystemTechnical Products International, Inc.Other vibratomes are compatible
GlycerolFisher ScientificBP229-1
Tween-20Fisher ScientificBP337-500
Premium SlidesFisher Scientific12-544-2
#1.5 CoverslipsVWR48393 251
Diamond ScriberVWR52865-005
Zeiss LSM 510 Meta confocal microscopeZeissLSM 510
Ketaject® Ketamine HCl Inj., USP 100 mg/mlWestern Medical Supply, Inc.4165
AnaSed® Injection Xylazine 20 mg/mlLloyd Inc.
ZsGreen MiceJackson Laboratories7906B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J
Surgical equipmentThumb forceps; Fine scissors-angled to side, sharp-sharp; Sharp-sharp scissors; Kelly hemostats; Mayo scissors; Micro spatula.
Human Foreskin Fibroblasts (HFF) cellsThese are primary cells from human foreskins.  We make these in-house but they may be purchased from outside vendors.
Dulbecco's High Glucose Modified Eagles Medium (DMEM)HyCloneSH30081.01
Penicillin Streptomycin Solution, 100xCorning30-002-Cl
200 mM L-alanyl-L-glutamineCorning25-015-Cl
25 cm2 Canted neck flaskFisher Scientific1012639
Phosphate-Buffered Saline, 1x Without Calcium and MagnesiumVWR45000-446
Phosphate-Buffered Saline, 10x, USP Sterile Ultra Pure GradeamrescoK813-500ml
Fetal Bovine SerumGibco26140-079
Bright-Line HemocytometerSigma-aldrichZ359629-1EA
Mouse Brain Slicer MatrixZivic InstrumentsBSMAS005-1
Sodium ChlorideFisher ScientificBP358-1
Heparin sodium salt from porcine intestinal mucosaSigma-aldrichH3393-100KU
ParaformaldehydeFisher ScientificO4042-500
20 ml Disposable Scintillation VialsFisher ScientificFS74500-20
Alcohol, Ethyl, 95%, 190 ProofIn-house17212945This product is purchased from an in-house stockroom.  Other companies are compatible.
Imaris SoftwareBitplane
Clear nail polishOther brands are compatible
10 ml Syringe with Luer-LokVWRBD309604Other syringes are compatible
Three-way StopcockAny brand is compatible
Hypodermic needleAny brand is compatible - used to pin down mouse.
Cell ScraperAny brand is compatible
25 G x 12" Tubing, Safety Blood Collection Set, with Luer AdapterGreiner Bio-One450099Other brands are compatible

参考文献

  1. Luft, B., Remington, J. Toxoplasmic encephalitis in AIDS. Clin Infect Dis. 15 (2), 211-222 (1992).
  2. Hill, D., Dubey, J. P. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect. 8 (10), 634-640 (2002).
  3. Ingram, W. M., Goodrich, L. M., Robey, E., Eisen, M. B. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PloS one. 8 (9), 75246 (2013).
  4. Evans, A. K., Strassmann, P. S., Lee, I. -. P., Sapolsky, R. M. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats. Brain Behav Immun. 37, 122-133 (2013).
  5. Ferguson, D. J., Hutchison, W. M. The host-parasite relationship of Toxoplasma gondii in the brains of chronically infected mice. Virchows Arch A Pathol Anat Histopathol. 411 (1), 39-43 (1987).
  6. Ferguson, D. J., Graham, D. I., Hutchison, W. M. Pathological changes in the brains of mice infected with Toxoplasma gondii: a histological, immunocytochemical and ultrastructural study. Int J Exp Pathol. 72 (4), 463-474 (1991).
  7. Melzer, T. C., Cranston, H. J., Weiss, L. M., Halonen, S. K. Host Cell Preference of Toxoplasma gondii Cysts in Murine Brain: A Confocal Study. J Neuroparasitology. , (2010).
  8. Selever, J., Kong, J. -. Q., Arenkiel, B. R. A rapid approach to high-resolution fluorescence imaging in semi-thick brain slices. J Vis Exp. (53), (2011).
  9. Koshy, A., Fouts, A., Lodoen, M., Alkan, O. Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions. Nat Methods. 7 (4), 307-309 (2010).
  10. Koshy, A. a., Dietrich, H. K., et al. Toxoplasma co-opts host cells it does not invade. PLoS pathog. 8 (7), (2012).
  11. Madisen, L., Zwingman, T. a., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 13 (1), 133-140 (2010).
  12. Caffaro, C. E., Koshy, A. s., Liu, L., Zeiner, G. M., Hirschberg, C. B., Boothroyd, J. C. A nucleotide sugar transporter involved in glycosylation of the Toxoplasma tissue cyst wall is required for efficient persistence of bradyzoites. PLoS pathog. 9 (5), (2013).
  13. Saeij, J. P. J., Boyle, J. P., Boothroyd, J. C. Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends in parasitology. 21 (10), 476-481 (2005).
  14. Dubey, J. P., Lindsay, D. S., Speer, C. a Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 11 (2), 267-299 .
  15. Prandota, J. Possible Link Between Toxoplasma Gondii and the Anosmia Associated With Neurodegenerative Diseases. Am J Alzheimers Dis Other Demen. 29 (3), 205-214 (2014).
  16. Berenreiterová, M., Flegr, J., Kuběna, A., Němec, P. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PloS one. 6 (12), 28925 (2011).
  17. Ferguson, D. J., Hutchison, W. M. An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res. 73 (6), 483-491 (1987).
  18. De Chiara, G., Marcocci, M. E., et al. Infectious agents and neurodegeneration. Mol Neurobiol. 46 (3), 614-638 (2012).
  19. Scott, C. a., Rossiter, J. P., Andrew, R. D., Jackson, A. C. Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol. 82 (1), 513-521 (2008).
  20. Ke, M. -. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16 (8), 1154-1161 (2013).

Erratum


Formal Correction: Erratum: 3-D Imaging and Analysis of Neurons Infected In Vivo with Toxoplasma gondii
Posted by JoVE Editors on 9/01/2015. Citeable Link.

A correction was made to "3-D Imaging and Analysis of Neurons Infected In Vivo with Toxoplasma gondii". The ordering of the authors was inverted. The order has been updated from:

Anita A. Koshy, Carla M. Cabral

to:

Carla M. Cabral, Anita A. Koshy

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

94

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。