Method Article
Human tuberculosis infection is a complex process, which is difficult to model in vitro. Here we describe a novel 3D human lung tissue model that recapitulates the dynamics that occur during infection, including the migration of immune cells and early granuloma formation in a physiological environment.
结核病(TB)仍然占据着一个重大威胁人们的健康全世界,并且有必要对成本效益的,但可靠的模型帮助我们理解疾病机制和推动新的治疗选择的发现,在 体外细胞单层培养或共培养物缺乏所述三维(3D)环境和组织反应。在此,我们描述了一个创新的人的肺组织,它有希望成为一个有效的工具,研究发生感染结核分枝杆菌(结核杆菌 )在复杂事件的体外模型 。三维组织模型由组织特异性上皮细胞和成纤维细胞,它们是在胶原蛋白上的多孔膜的顶部上的基质中培养的。一旦暴露在空气中,上皮细胞分层和分泌粘液的顶侧。通过将人的主要巨噬细胞感染了M.结核病到组织模式升,我们已经表明,免疫细胞迁移至感染组织并形成结核病肉芽肿早期阶段。这些结构概括人类结核病的肉芽肿,这是根本不同的或广泛使用的实验动物模型中没有普遍观察到的显着特点。此器官培养方法使3D可视化和健壮定量分析,提供对宿主细胞 - 病原体相互作用的空间和时间特性枢轴信息。总之,肺组织模型提供了生理相关的组织微环境对结核病的研究。因此,肺组织模式有两个基本机理和应用研究的潜在影响。重要的是,该模型允许除了个别的细胞类型,这由此扩大其使用用于建模的各种影响肺部感染性疾病或操纵。
在人类中,反应感染,组织发炎,细胞招募,组织重塑和组织稳态的调节是涉及不同的细胞类型的复杂的事件。因此,这些过程最好研究了在局部组织环境中。先前,这已经用实验动物模型中主要是不可能的。但是,广泛使用的实验动物容纳许多限制,因为他们往往病原体响应以不同的方式比人类,也显示不同的病程1。 体外肺组织模型甲人持有的可能性,研究在人肺特异性免疫应答。
人类结核感染(TB)是主要的疾病影响肺部。 结核分枝杆菌(结核分枝杆菌 ),结核病的病原体,到达经由被运送到肺泡空间,其中该细菌通过肺dendri吞没气溶胶小滴的肺抽动细胞和肺泡巨噬细胞,以感染2,3先天免疫应答的一部分。病原体的吞噬导致吞噬小体中的bug条块分割,最好的结果,在中和杀害的病原体引起的吞噬。达暴露于分枝个体的50% 结核被认为是能够通过先天免疫反应4以清除感染。感染的其他成果是间隙由适应性免疫系统在后一阶段,潜伏感染或在最坏的情况下慢性活动性疾病5。
以前没有出现过的体外组织模型为人类结核病的研究。人巨噬细胞或其它外周血细胞的单细胞培养物常常被用来6,7。这种方法的缺点是,它们不能反映不同的细胞类型一起操作以肺组织暴露到 M的动态肺结核 。因此,存在需要一种体外模型 ,以便能够对结核病执行功能和机理研究。基于细胞的在本文所述体外人肺组织模型最初由我们的组对树突状细胞功能8研究建立的。我们已经适应了这种方法用于结核病的研究。
这里介绍的人肺组织模型由组织特异性上皮细胞和成纤维细胞8。这些细胞在胶原蛋白上的Transwell小插入物和形式的结构类似于正常人肺组织(图1)的多孔膜的顶部上的基质中培养。当暴露于空气中的细胞开始分泌粘液在根尖侧 8。通过植入人体主要的巨噬细胞感染了M.结核病的模型,我们已经观察到的免疫细胞在组织中如何迁移并形成结核病肉芽肿9的早期阶段。这是人类第一次组织模型DESCRIBED结核病和它构成一个行之有效的手段研究先天免疫反应结核病和肺部等疾病。到目前为止,我们已经使用只单核细胞和巨噬细胞作为免疫细胞中的模式,但复杂的水平可以增加通过包含额外的相关细胞类型。
图肺组织模型1.纲要。 (A),该模型是由人的肺特异性上皮细胞,M。结核感染的原发性巨噬细胞和红色染料标记的单核细胞接种于准备在Transwell滤膜胶原嵌入式成纤维细胞。曝光的组织模型的空气由上皮发起生产细胞外基质蛋白,粘液分泌和分层。因此,开发的3D组织模型是研究M.一个有用的工具结核感染在CLO环境sely类似于一个人肺。(B)的在所述组织模型的制备的不同步骤代表性显微图像。(C)的肺模型组织切片的完全结构。秤- 100微米请点击此处查看该图的放大版本。
注:从在林雪平大学医院的血库购买健康匿名献血者的外周血中,瑞典作为免疫细胞的来源,这项研究。这个协议设计24毫米6孔板插入。直接适应等众多格式,不推荐,因为组织合同范本垂直和水平的发展过程中。
1.准备的细菌/细胞系的材料,媒介和文化
2.制备胶原蛋白包埋成纤维细胞
的成纤维细胞胶原基质的3连续培养
4.播种免疫细胞(感染/未感染的单核细胞 - 巨噬细胞混合物)
注意:下面的实验步骤涉及毒性分枝杆菌,因此,必须在一个BSL-3设施来进行。
5.播种肺上皮细胞(16HBE)
注意:下面的步骤必须在BSL-3设施来进行。
6.空中曝光的3D隆型号
注意:在后第5天加入感染的巨噬细胞,组织模型是空气暴露和随后的步骤必须在BSL-3设施来进行。
7.收获和安装3D肺组织模型
注意:下面的步骤必须在BSL-3设施来进行。
8,可视化,采集和定量三维分析
甲三维肺组织模型为人类结核病可以有效地用于研究M中的宿主-病原体相互作用结核感染 。该方法的基本步骤,不同的步骤和组织切片的整体微观结构代表显微镜图像在图1中进行了概述。该模型具有人肺组织的几个部分组成,其中包括肺成纤维细胞,支气管上皮细胞和原代单核细胞/巨噬细胞嵌在三维组织的环境。除了结合人体肺组织的组成部分,该模型类似于生理条件,即分层上皮细胞和粘液分泌。
对于使用在监测结核感染的肺组织模型的一个例子示于图2中 ,对于可视化M.肺结核 -immune细胞迁移和互动,我们推出了感染M.巨噬细胞表达GFP 肺结核(绿色)连同新鲜分离PKH26标记的单核细胞(红色)进入组织模型(蓝色,DAPI染色的细胞核)。第7天,后加入M的结核病感染的细胞到组织模型中,共聚焦显微镜揭示了在感染(绿色)的部位(图2),它模仿人类结核病9的标志病变红色单核细胞簇。
一系列的代表图像为M的三维可视化结核病感染的组织模型和细胞簇的量化如图3的3D可视化使用户灵活地相互作用,检查和量化在3D图像的几个特点。绿菌和红色单核细胞簇的空间布置可从心尖,旋转和侧视图被看作如图 3B所示,它揭示了单核细胞的聚集在M的站点肺结核的集群 没有OB未感染的组织( 图3A)担任。我们量化单核细胞簇的大小和数量,发现细胞簇的大小(体积)的增强(P <0.001),而个别的单核细胞的数目M.降低 (p <0.01)相比于未感染的组织模型(图3C 和3D) 结核病感染的组织。这些数据验证了我们之前的早期肉芽肿形成的M.发现在2D组织切片9分析肺组织模型结核感染观察。
我们的数据显示,该组织模型提供了一个自然的3D栖息地调查复杂的宿主细胞- M.结核病的通信网络。我们还发现,三维可视化和定量分析是用于研究的特征在组织模型 (图3)更好的工具。小区集群的定量(肉芽肿例如)常常伸缩 HES几个细胞层,并且可以通过一个三维定量分析完全捕获。此外,单个细胞或细菌模型的准确时间和空间可视化功能允许在指定的实验室进行实时成像,迁移和跟踪研究。
图2.单核细胞周围剧毒M.组织模型集群肺结核,未感染和 M.代表共聚焦图像结核感染的组织模型。板从绿色( 分枝的结核GFP),红色(PKH26标记的单核细胞),蓝色(DAPI染色细胞核)和合并的信道显示在感染组织的单核细胞的募集相比未感染的组织。规模 - 100微米。large.jpg"的风格="字体大小:14px的;的line-height:28px;"目标="_空白">点击此处查看该图的放大版本。
图3.三维可视化和组织模型的定量分析提供有用的信息。感染分枝整个组织模型(A)的未感染的组织,(B)的 3D可视化的代表性图像结核,通过使用蔡司LSM700共聚焦显微镜和定量分析了Imaris图像处理软件(7.6.8版本)光学切片。在20X放大率下获得这些图像,14的z堆叠覆盖的19.5微米的组织厚度1.5微米的间隔,允许从顶端,旋转水平,垂直旋转和横向视图(A和B)的可视化。(C)的第四纪分枝后早期肉芽肿单核细胞群的细胞团的ntitative分析揭示增加(P <0.0001)大小时相比,没有感染的结核病感染。(D)的单核细胞的数量的定量表明在感染组织的下降(P <0.01)相比,未感染的组织,重申多个聚类中的感染组织。绿色- M.结核病 - GFP,红色- PKH26标记的单核细胞,蓝-细胞核,尺度- 100微米请点击此处查看该图的放大版本。
The ability to recruit and form organized cell clusters at the site of infection is the hallmark of human TB 11. These dynamic structures known as tubercle granulomas primarily consist of immune cells (macrophages, monocytes, T-cells and B-cells) and multi-nucleated giant cells surrounding M. tuberculosis. The role of the granuloma has long been considered to wall off the infection, preventing local spread of bacteria. However, more recent studies show that granuloma formation is critical for early bacterial survival, growth and dissemination 12. A strategy of new studies is to identify molecules or pathways that could efficiently be targeted to inhibit the cellular migration in granuloma formation and/or TB dissemination.
A caveat for novel studies on TB is the lack of models that recapitulate human TB. The most widely used experimental animals do not form true granuloma upon M. tuberculosis infection, and are therefore not appropriate choices for studies of TB 13-16. Non-human primates have the closest resemblance to human TB 17, but are not the preferred choice owing to high operational costs and ethical issues. Human TB is a complex immunological process and is difficult to model in vitro. Cell cultures of monolayers or co-cultures lack the 3D environment and tissue responses. Therefore, we have developed an innovative lung tissue model based on human primary immune cells and human lung-specific cell lines 8,9. The model displays characteristic features of human lung tissue, including epithelia with evenly integrated macrophages, formation of extracellular matrix, stratified epithelia and mucus secretion 9.
The 3D human lung tissue model has several benefits over the in vitro single or co-cultures seeded on tissue culture plates or transwell inserts. First, the human lung-specific cells (fibroblasts and epithelial cells) are not commonly included in the in vitro single or co-cultures. Second, the immune cells and lung-specific cells are embedded in a 3D physiological context (collagen rich extra-cellular matrix products). The response of cells to a stimulus/infection and the migratory behaviour of cells, for instance formation of a granuloma, differ significantly between a 2D and 3D environment. Furthermore, the described method enables the 3D visualization and robust 3D quantitative analysis that provides pivotal information on spatial distribution and intricate cellular interactions.
Experimental infection in the model tissue with M. tuberculosis resulted in clustering of macrophages at the site of infection, reminiscent of early TB granuloma (Figure 2 and 3). We have recently demonstrated that mutant strains defective in the ability to secrete the virulence factor ESAT-6 or Mycobacterium bovis BCG that lacks ESAT-6 did not induce the clustering of monocytes (no early granuloma), in contrast to the virulent M. tuberculosis 9. These data are consistent with the observations made from Mycobacterium marinum-infected zebrafish embryos, whose transparency allows for elegant live imaging of granuloma formation 12. As there is no gold-standard model for TB, we took advantage of the surgically resected tissue biopsies from TB patients for validation of the method 9. Our in vitro tissue model shares several characteristics with the lung and lymph node biopsies from TB patients, including the aggregation of macrophages in granuloma, the presence of both intra- and extracellular bacteria 18 and induction of necrosis 11.
Although the described model has physiological relevance to human TB and has several advantages over other in vitro models, it has some limitations. For instance, out of more than 20 collagen proteins identified in humans, only type I is included to the model to mimic the extra-cellular matrix. However, type I collagen is a complex mixture of extra-cellular matrix products and is the most abundant collagen in the human body. Further, we have demonstrated the presence of collagen IV and several extra-cellular matrix proteins such as tropoelastin, vimentin and laminin, which are produced by the epithelial cells and fibroblasts in the tissue model, indicating the synthesis of new collagen 8. Presently, the lung tissue model only has monocytes and macrophages, besides lung-specific cells. It lacks neutrophils and lymphocytes that are also known to be present in the granuloma. Remarkably the model is not limited to the introduction of additional immune cells and is of interest to explore how they contribute to the complex cellular interactions in human TB. Implantation of primary alveolar macrophages, skin-specific cells and lung carcinoma cells has already been tested in the model. Since our objective was to use a model that closely resembles human TB, introduction of mouse cells have not been attempted.
In summary, the lung tissue model has implications for both basic mechanistic and applied studies. Potential applications of the lung model include the study of innate immunity, investigating mechanistic aspects of host defences such as phagosomal maturation, autophagy, production of cytokines, chemokines and anti-microbial peptides, and functional characterization of individual cell types. Strikingly, the in vitro tissue model allows manipulation of one or more cells types and provides a relevant tissue micro-environment, not only for studies on TB, but for a variety of infectious and non-infectious diseases that affect the lungs.
The authors declare no competing financial interests.
The authors acknowledge the Microscopy core facility at the Faculty of Health Sciences, Linköping University for providing access to advanced imaging systems; Karl-Eric Magnusson (Emeritus Scientist) at the Dept. of Clinical and Experimental Medicine, Linköping University for providing access to Imaris 3D/4D image processing software (Bitplane, Switzerland); and S. Braian for his help with the lung model cartoon. This work was supported by funds from the Swedish Research Council (Alternatives to animal research, 2012-1951) and Swedish Research Council (2012-3349) to M.L. and Swedish Foundation for Strategic Research to S.B. S.B. receive grants from the Karolinska Institutet, Swedish Research Council, the Swedish International Development Cooperation Agency (Sida) and the Swedish Civil Contingencies Agency (MSB), and the Swedish Heart and Lung Foundation (HLF). M.S. received grants from the Karolinska Institutet and Stockholm County Council.
Name | Company | Catalog Number | Comments |
Cell culture inserts | BD Falcon | 353092 | |
6-well culture plates | BD Falcon | 353046 | |
MRC-5 cells, lung fibroblasts | ATCC#CCL-171 | ||
16HBE cells, lung epithelial cells | Gift from Dr. Dieter Gruenert, Mt. Zion Cancer Center, University of California, San Fransisco, USA | ||
5 x Dulbecco’s modified Eagle’s medium (5 x DMEM) | Gibco | 12800-082 | Made from powder but add 5 times less water. Adjust pH to 7.3 and filter it using a 0.2 µm filter. |
Dulbecco’s modified Eagle’s medium with glucose (DMEM) 1x | Gibco | 41965-039 | |
Minimum Essential Medium (MEM) 1x with Earle’s salts | Sigma | M4655 | |
Non-Essential Amino Acids Solution, 100x | Life Technologies | 11140-035 | |
L-glutamine 200 mM (100x) | Gibco | 25030-024 | |
Sodium Pyruvate | Life Technologies | 11360-039 | |
NaHCO3 (71.2 mg/ml) | Prepared in house | ||
Heat inactivated Fetal Bovine Serum (FBS) | Gibco | 10270-106 | Heat inactivated for 30 min, 56 °C |
Gentamicin (50 mg/ml) | Gibco | 15750-060 | |
Hepes buffer solution 1M | Gibco | 15630-056 | |
Penicillin Streptomycin (Pen Strep) | Gibco | 15140-122 | |
Lymphoprep | Axis-Shield | 7801 | |
Ultrapure 0.5 M EDTA | Gibco | 15575 | |
Bovine Collagen PA treated (500 ml) | Organogenesis | 200-055 | |
Pure col purified Bovine Collagen solution (100 ml) | Advanced biomatrix | 5005-B | |
Extracellular matrix protein, Fibronectin (1 mg) | BD | 354008 | |
Primary human monocytes/macrophages | Isolated from human whole blood or buffy coats. | ||
PKH26 Red fluorescent cell linker | Sigma | MINI26 | |
Mycobacterium tuberculosis H37Rv expressing green fluorescent protein | M. tuberculosis H37Rv wild type was transformed with the pFPV2 plasmid constitutively expressing GFP. | ||
Middlebrook 7H9 medium | Difco | 271310 | |
BBL Middlebrook ADC Enrichment | BBL | 211887 | |
Tween-80 | |||
Glycerol | |||
Kanamycin B sulfate (20 µg/ml) | Sigma | B5264 | |
Prolong Gold anti=-fade reagent with DAPI | Invitrogen | P36935 | |
Trypsin -EDTA | |||
Bovine serum albumin | |||
Paraformaldehyde | |||
DAPI | |||
LSM700 Confocal microscope | Zeiss | ||
iMaris Scientific 3D/4D image processing software, version 7.6.8 | Bitplane AG |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。