JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

A protocol is described for the preparation of high-quality mitotic plant chromosome spreads by a fast air-dry dropping method suitable for the FISH detection of single and high copy DNA probes.

摘要

染色体利差的准备是荧光原位杂交技术的成功表现(FISH)的先决条件。高品质的植物染色体利差准备是具有挑战性,因为刚性细胞壁。之一的植物染色体的制备的批准的方法是所谓的滴制剂,也称为滴扩展或空气干燥技术。在这里,我们提出了一个协议,为快速编制有丝分裂染色体的利差适合FISH检测单和高仿DNA探针。这种方法是在50%-55%的相对湿度下进行的风干滴法的改进的变体。这个协议包括清洗步骤使得其应用简单,有效和可再现的数目减少。这种方法的显而易见的好处是作为成功的FISH分析了完善的前提条件良好的蔓延,没有损坏和大量的中期染色体。使用这个协议,我们得到高品质的CHROMosome差价和可重复的FISH结果大麦,H球茎,H海鱼,H murinum,H pubiflorum黑麦

引言

荧光原位杂交(FISH)是一种有效的工具,单一的,高拷贝序列在染色体水平的物理图谱。前提条件是高品质的染色体利差的准备。没有一般染色体制备方案,这将是同样适用于动物和植物细胞。植物染色体的制备是特别具有挑战性,因为不同的物种中的刚性细胞壁和各种细胞质的一致性。之一的有利方法植物染色体的制备是一个所谓的滴技术也被称为落扩频技术和空气干燥技术1,2。该方法首先在1958引入由Rothfels和Siminovitch用于体外生长哺乳动物细胞3。后来Martin等人4Kato等人5适于这种方法的植物。

最近,一个名叫法"SteamDrop'被开发了用于水蒸汽的非重叠的染色体6的制备。虽然,前面7观察到高湿度的积极影响,'SteamDrop'提供高质量染色体制剂6的受控流。蒸汽处理引起拉伸可能连接到染色体蛋白质的一些修改染色体。导致中期扩展的质量是非常高的,虽然中期完成足够数量的固定利差随后FISH实验要求的专业技术。

在这里,我们提出了一个协议为适合FISH检测单和高仿探测器5,8的有丝分裂染色体谷物的准备。这种方法是由加藤下的50%-55%的相对湿度进行9(图1)中描述的风干落下法的改进的变体。这个协议包括减少数量的洗涤步骤使得其应用简便,高效和可重复性。使用这个协议,我们得到高品质的染色体利差和FISH结果大麦,H球茎,H海鱼,H murinum,H pubiflorum黑麦

研究方案

1.染色体制备

  1. 种子萌发和根尖的固定
    1. 发芽在黑暗条件下的皮氏培养皿2天在22-24℃,在湿润的滤纸两层10-20大麦种子。通过用刀片切断剧烈根系1-2厘米从种子的长度。
    2. 通过将装有冷自来水入碎冰 - 水的500ml玻璃瓶制备冰冷的水中。充入冰冷的水,沉浸根尖为20小时,以增加中期细胞的频率。
    3. 从水到根部到50毫升乙醇:乙酸(3:1)固定液固定它们在室温2天。商店的根在新制备的乙醇:乙酸(3:1)固定液在4°C,直到使用最多的一年。
  2. 洗涤和酶处理
    1. 洗10-20根用30ml冰冷的自来水进行5分钟,两次用50ml的玻璃烧杯中。使用双目显微镜。通过一个传输根一成30毫升使用镊子和通过摇动在玻璃烧杯5分钟洗两次的0.01M柠檬酸盐缓冲液(0.01M柠檬酸+ 0.01柠檬酸钠,pH值4.8)。放置在滤纸上的根,完全除去液体并用刀片切断不希望的非分生组织。
    2. 孵育达于1ml酶混合物20根尖,在37℃下进行约50分钟,以软化植物组织表1)在表玻璃。酶混合物含有0.7%的纤维素酶R 10,0.7%纤维素酶,1%果胶酶和1%cytohelicase稀释在0.01M的柠檬酸盐缓冲液。在-20℃下储存酶混合物和重复使用高达五倍。
    3. 通过移液除去酶并用5ml的0.01M柠檬酸盐缓冲液洗根尖在冰上两次更换残留酶。
  3. 根浸渍
    1. 洗涤根尖用1ml 96%乙醇仔细在同一表玻璃两次。更换新鲜配制的固定液(75%乙酸:25%乙醇),乙醇。使用10-15每根尖微升固定液。
    2. 转印根尖连同固定剂到2ml管和崩解根分生组织用解剖针或镊子。挖掘管20次以重新悬浮细胞,以获得一个细胞悬浮液。存储所述细胞悬浮液在-​​20℃到两个月。
  4. 细胞悬浮液的滴液
    1. 放置2-3层水渍薄纸在热板上在50℃下。沉浸显微镜载玻片在冰冷的自来水在冰箱30分钟。而地方上滑动的湿纸巾之上。
    2. 吸管7-10微升细胞悬浮液,并从20厘米的距离拖放到冷却滑动放置在热板上。吸管上相同的位置上的滑动细胞悬浮液10微升乙酸 - 乙醇混合物中,并保持在热板上进行额外2分钟的幻灯片。放置在热板上滑动而不湿纸巾,并让它干燥1分钟。
  5. 质量控制和存储媒体Ë幻灯片
    1. 检查使用相位差显微镜来控制染色体扩散的质量幻灯片。通过在-20℃下浸在96%的乙醇中,在科普林缸使用滑板或者在同一天或存储。
  6. 鱼类面前,幻灯片预处理;所有步骤都在室温下
    1. 在含有50ml 2×SSC的科普林缸地方载玻片(20×SSC含有3M NaCl的和300mM的柠檬酸三钠)5分钟。使用镊子,转印滑动到含有3-10分钟加入50ml 45%乙酸的科普林缸。
    2. 转移幻灯片包含10分钟50毫升2X SSC的科普林缸。转移到载玻片含有50ml 4%甲醛的科普林缸(在2×SSC),并浸泡载玻片10分钟,以固定的染色体。
    3. 通过漂洗载玻片3次,每次4分钟,在含50ml 2×SSC中科普林缸清除甲醛。脱水在科普林缸载玻片2分钟在一系列的70%,90%和100%的乙醇,分别和干片在垂直位置。

2. 荧光原位杂交(FISH)

  1. 对于每一个幻灯片,准备20微升杂交液共使用10微升去离子甲酰胺,5微升4×杂交缓冲液(200微升缓冲液中含有80微升20X SSC,8微升的1M的Tris-HCl pH值8.0,1.6微升0.5M的EDTA,11.2微升10微克/微升的鲑精和99.2微升DNA酶的水),3微升探针和2μl的DNA酶的水。
  2. 加入20微升的每张幻灯片和盖杂交液用24×32毫米遮滑逮捕盖玻片用橡皮泥。同时变性幻灯片探针在80℃下,在热板2分钟。
  3. 转移到幻灯片湿室和孵化的幻灯片,在37°CO / N避光。冲洗的幻灯片在科普林罐2X SSC取出盖玻片。在含55-60℃2×SSC和一个科普林缸地方幻灯片孵育20分钟。
  4. 放置载玻片到2X SSC在科普林缸在室温2分钟。脱水的幻灯片在科普林缸为串联的分别为70%,90%和100%的乙醇,2分钟。
  5. 风干载玻片和染液用1微克/毫升4'​​,6-二脒基-2- phenylindoline吲哚(DAPI)在抗褪色封固剂,避免强光。

3.微观分析和存储

  1. 分析用落射荧光显微镜载玻片。过滤器的选择取决于用于探针标记的荧光染料。如果有必要,在4℃黑暗条件下长达一年的时间在商店的幻灯片。

结果

显微镜载玻片与有丝分裂的中期扩展是由上述的快速风干滴染色体制备方法制备增刊,图1)。 FISH进行了分析,同时使用,重复和单拷贝序列。图像由一个落射荧光显微镜获得具有一组过滤器能够对应荧光团的激发和通过高灵敏度的CCD单色照相机捕获。用于图像采集,我们使用的计算机具有图像采集软件。采用5S rDNA序列,[铁通] 10和单拷贝探针的有丝分裂中期?...

讨论

染色体制备实验已进行了使用属于禾本科(禾本科)谷物幼根。所有分析的品种有14相对较长的有丝​​分裂中期染色体(11-15微米)的二倍体基因组集,属于大型基因组的物种(5.1-7.9 GBP)的。

发芽根长度不超过2厘米,以获得最大的分生组织。分裂细胞同步是由一个20小时长冰-水处理该改进的有丝分裂中期的扩散量10来实现的。

两个步骤是在制?...

披露声明

The authors have nothing to disclose.

致谢

We gratefully thank the DFG for financial support (HO 1779/21-1) as well as Katrin Kumke and Dr. Veit Schubert (IPK, Gatersleben) for technical advice.

材料

NameCompanyCatalog NumberComments
Hot PlateMEDAX GmbH12603
Cellulase R10DuchefaC8001
Cellulase CalBioChem219466
PectolyaseSigmaP3026
CytohelicaseSigmaC8274
Texas Red-12-dUTPInvitrogenC3176direct fluorochrome 
Fluor488-5-dUTPInvitrogenC11397direct fluorochrome 
Fluorecsence microscopeOlympus BX61BX61
CCD cameraOrca ER, HamamatsuC10600
4’,6-diamidino-2-phenylindole (DAPI) Vector LaboratoriesH-1200fluorecsent dye

参考文献

  1. Geber, G., Schweizer, D. Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Pl Syst Evol. 158 (2-4), 97-106 (1988).
  2. Andras, S. C., et al. A drop-spreading technique to produce cytoplasm-free mitotic preparations from plants with small chromosomes. Chromosome Res. 7 (8), 641-647 (1999).
  3. Rothfels, K. H., Siminovitch, L. An air-drying technique for flattening chromosomes in mammalian cells grown in vitro. Stain Technology. 33 (2), 73-77 (1958).
  4. Martin, R., Busch, W., Herrmann, R. G., Wanner, G. Efficient preparation of plant chromosomes for high-resolution scanning electron microscopy. Chromosome Res. 2 (5), 411-415 (1994).
  5. Kato, A., Albert, P. S., Vega, J. M., Birchler, J. A. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81 (2-3), 71-78 (2006).
  6. Kirov, I., Divashuk, M., Van Laere, K., Soloviev, A., Khrustaleva, L. An easy 'SteamDrop' method for high quality plant chromosome preparation. Mol. Cytogenet. 7, 21 (2014).
  7. Spurbeck, J. L., Zinsmeister, A. R., Meyer, K. J., Jalal, S. M. Dynamics of chromosome spreading. Am J Med Genet. 61 (4), 387-393 (1996).
  8. Ma, L., et al. Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res. 18 (7), 841-850 (2010).
  9. Kato, A., Lamb, J. C., Birchler, J. A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. U S A. 101 (37), 13554-13559 (2004).
  10. Pan, W. H., Houben, A., Schlegel, R. Highly effective cell synchronization in plant-roots by hydroxyurea and amiprophos-methyl or colchicine. Genome. 36 (2), 387-390 (1993).
  11. Kim, J. S., et al. Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome. 45 (2), 402-412 (2002).
  12. Lapitan, N. L. V., Brown, S. E., Kennard, W., Stephens, J. L., Knudson, D. L. FISH physical mapping with barley BAC clones. Plant J. 11 (1), 149-156 (1997).
  13. Aliyeva-Schnorr, L., et al. Cytogenetic mapping with centromeric BAC contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J. 84, 385-394 (2015).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

106

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。