JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

We established the photoconvertible PSmOrange system as a powerful, straight-forward and cost inexpensive tool for in vivo cell tracking in GFP transgenic backgrounds. This protocol describes its application in the zebrafish model system.

摘要

The rapid development of transparent zebrafish embryos (Danio rerio) in combination with fluorescent labelings of cells and tissues allows visualizing developmental processes as they happen in the living animal. Cells of interest can be labeled by using a tissue specific promoter to drive the expression of a fluorescent protein (FP) for the generation of transgenic lines. Using fluorescent photoconvertible proteins for this purpose additionally allows to precisely follow defined structures within the expression domain. Illuminating the protein in the region of interest, changes its emission spectrum and highlights a particular cell or cell cluster leaving other transgenic cells in their original color. A major limitation is the lack of known promoters for a large number of tissues in the zebrafish. Conversely, gene- and enhancer trap screens have generated enormous transgenic resources discretely labeling literally all embryonic structures mostly with GFP or to a lesser extend red or yellow FPs. An approach to follow defined structures in such transgenic backgrounds would be to additionally introduce a ubiquitous photoconvertible protein, which could be converted in the cell(s) of interest. However, the photoconvertible proteins available involve a green and/or less frequently a red emission state1 and can therefore often not be used to track cells in the FP-background of existing transgenic lines. To circumvent this problem, we have established the PSmOrange system for the zebrafish2,3. Simple microinjection of synthetic mRNA encoding a nuclear form of this protein labels all cell nuclei with orange/red fluorescence. Upon targeted photoconversion of the protein, it switches its emission spectrum to far red. The quantum efficiency and stability of the protein makes PSmOrange a superb cell-tracking tool for zebrafish and possibly other teleost species.

引言

Exponentially improving imaging techniques allow following developmental processes over time periods of up to about four consecutive days3. In zebrafish and many other animal model systems, specific cells, tissues, axonal or vascular structures are marked by transgenic green or sometimes red or yellow fluorescent proteins to facilitate visualization. However, in most transgenic lines the transgene is not specifically expressed in the cells of interest but also additional structures, which hinders the precise tracking of for instance single cells or groups of cells.

Fluorescent photoconvertible proteins are well suited for cell tracking during embryonic development. The prerequisites for the application of such proteins are a long-lived nature, a well-separated emission range upon conversion and bright fluorescence. Available photoconvertible proteins comprise those that change their emission range upon conversion such as Kaede4, KiGR5, mEos26, PS-CFP2 or Dendra27 and others which are only fluorescent when photoactivated (PAmCherry8, PAGFP9 or PATagRFP10). Their applications to track cells in existing FP-transgenic animals are however limited as they often involve a green fluorescent state or do not fulfill all of the above criteria. Only recently, Subach and colleagues reported the PSmOrange protein, which changes its emission from orange/red to far red upon photoconversion and was successfully applied in cells in culture and cultured cells injected into mice2.

To investigate the protein's suitability for cell tracking in a living embryo, we generated an expression construct for the microinjection of nuclear-tagged H2B-PSmOrange into zebrafish embryos. We find that the protein fulfills all prerequisites for successful cell tracking in GFP transgenic backgrounds during the first 4 (and possibly more) days of zebrafish embryonic development. During this time, most of the cell migratory events are completed in fish making the PSmOrange system an excellent addition to the zebrafish toolkit.

研究方案

1. H2B-PSmOrange基因体外转录 mRNA纯化

  1. 线性化使用根据制造商的说明的NotI限制性内切酶含有PCS2 +质粒H2B-PSmOrange。
    注意:请使用适当的保护措施,如手套和白大褂,以防止污染的mRNA降解,并在接下来的步骤。
  2. 纯化使用根据制造商的协议的PCR纯化试剂盒或苯酚 - 氯仿基础的方法的线性化的DNA。
  3. 根据制造商的说明使用线性模板DNA 1微克了SP6-mRNA的转录。
  4. 通过在37℃下加入1.0单位RNAse游离DNA酶I 10-20分钟除去的DNA。
  5. 使用的RNA,根据制造商的协议清理试剂盒清理的mRNA。
  6. 以增加mRNA的纯度和浓度,通过加入6微升乙酸钠(3.0M,pH5.2)和150微升96%乙醇沉淀出的mRNA。孵育并购在-20℃ixed溶液至少30分钟,长达24小时。
  7. 通过在4℃下纺丝在18.407 XG的溶液45分钟收集的mRNA。弃去液体,并在150微升70%乙醇重悬的mRNA。混合和离心的溶液在4℃额外的15分钟。弃去液体,干燥在冰上5分钟,将沉淀,并在20微升超纯无RNase水重悬的mRNA。
  8. 100的mRNA稀释液(在99微升超纯无RNase水1微升mRNA)的:由1的光度测量评估mRNA的浓度和纯度。
  9. 对于短期存储,保持在-20℃的mRNA的溶液。对于长期存储,保持的mRNA在-80℃。

2. H2B-PSmOrange基因微量注射的斑马鱼胚胎

  1. 设置使用TG注射前对交配夜(FOXD3:GFP); TG(FLH:GFP)的双转基因鱼(或任何其他的GFP转基因鱼)。离开鱼放置一个隔板隔开在它们之间,以控制交配的时间。
  2. 除去在注射的早晨隔板和让鱼交配20分钟。
  3. 在交配时,淡化H2B-PSmOrange的mRNA 130皮克的最终浓度/ NL(在无RNA酶的水),并转让6微升注射溶液成使用微加载尖端的显微注射毛细管。检查注射量与校准的载玻片。调节注射压力注射2 NL的mRNA溶液(260皮克)。
  4. 收集鸡蛋放入含有1x胚胎(E3)中无菌塑料培养皿。
  5. 转移20到30的胚胎,使用一个塑料巴斯德吸管的喷射盘。
  6. 注入含有溶液到细胞或正下方的细胞进入蛋黄在单细胞阶段11 2 NL的mRNA。
  7. 转印注射胚胎成含有1x E3介质的培养皿,除去未受精或不能正常发育中的胚胎,并在28℃下生长它们。
    注:轻保障oF中的胚胎,不需要在整个实验。
  8. 提高在1×E3介质斑马鱼的胚胎和原肠胚形成后添加0.2mM的PTU(1-苯基-2-硫脲),以抑制色素沉着。改变介质每天两次,以减少细菌污染的危险。

3.胚胎嵌入

  1. 选择的GFP(绿色)和PSmOrange使用装有荧光灯和适当的发射滤光片双目显微镜(橙色/红色)共表达的胚胎。转移的积极胚胎成含有1x E3介质的无菌培养皿。
  2. Dechorionate胚胎使用镊子12在立体显微镜下。
  3. 在含有1.0毫升1.5毫升管传送一个胚胎预热用的切口尖端吸管(P200)在超纯水中制备1.0%低熔点琼脂糖(LMA)。注:在预热至LMA 80℃和嵌入胚胎前冷却在室温下3-5分钟。
  4. 转移胚胎在150微升LMA成腔玻璃罩和调节胚胎的取向,例如背侧中为倒共聚焦激光扫描显微镜A1R +(或任何其它合适的显微镜)中描述的实验下来,用细塑料小费。当向LMA是聚合的,用含有0.2mM的PTU和0.02%3-氨基苯甲酸乙酯甲磺酸盐(三卡因)麻醉鱼水填充腔室。
  5. 使样品成像之前,等待15分钟,以确定三卡因的效果。麻醉防止胚胎运动,可以使用装备有明照明立体显微镜进行监测。
    注意:室可两次重复使用。

4. PSmOrange光转化

  1. 放置共焦显微镜下的样品和扫描试样,以确定该地区使用488纳米和561纳米激光器分别成像GFP和PSmOrange到photoconvert。
    注意:使用倒置激光共聚焦显微镜A1R +上的倒站GE TiEcontrolled用显微镜成像软件,并配备了488纳米,561纳米和640纳米激光器光转化和成像。然而,应用程序当然没有限制,只要转换和成像激光线路可用限于此显微镜。
    1. 把20X空中目标到位(NA:0.75; WD 1.0毫米; FOV:0.64点¯x0.64毫米)。
    2. 使用下面的显微镜设置光转化之前检测PSmOrange蛋白质:561纳米的激光,在聚焦平面上的目标上述测定0.74毫瓦。
      注意:这对应于40%的在该系统上(在聚焦平面的测量是确定有效功率的唯一方式)。根据实验的需要为H2B-PSmOrange注射的效率可以变化调整激光功率。
    3. 添加缩放因子,突出感兴趣的区域。放大倍率越高,降低图像采集时间,因此光毒性。
  2. 收购Z堆栈覆盖结构的S使用488纳米和在顺序模式(线模式1-> 4)561纳米激光器的兴趣。修正1.0和2.0微米之间的z步骤。线平均和扫描频率可用于优化图像质量。
  3. 扫描样本并选择感兴趣(ROI)工具,该地区要突出以photoconvert的区域。修复投资回报率的刺激区域。选择照片激活/漂白模块,通过检查各个框激活488纳米激光器和488nm的激光设定为80%(在目标测量1毫瓦的激光功率)。设置扫描速度0.5秒/帧。
  4. 打开光转化工具(ND刺激),并指定光转换设置。
    1. 点击"添加"命令指定的光转化协议。
    2. 在"采集/刺激"菜单"获取"设置"相位"1和表示在"循环"菜单光转换之前获得的图像的数量。
    3. 设置"相位"2"圣要执行imulation"和输入的刺激的事件的数量。
    4. 调整"相位"3作为"相位"1可选描述,插入一个等待"相位"通过输入时间上轮图像采集前要等待"相位"后2。
    5. 一旦所有的参数都设置,应用刺激设置和运行该光转化。
      注意:激光功率,扫描和迭代次数为每一轮光转化可以变化的频率和从胚胎不同胚胎。的设置来启动表1中示出。
  5. 收购使用488纳米,561纳米和640纳米的激光应用设置如上一个最终的Z堆栈。设置640纳米的激光来可视化使用高的激光功率的转换PSmOrange(高达4.5毫瓦)。

5. LMA胚胎下马

  1. 除去从显微镜容纳室胚胎。小心地从琼脂糖ü取出胚胎唱镊子。
  2. 转移胚胎成新灭菌塑料培养皿或进入无菌含有1x E3和0.2mM的PTU 6-孔板。孵育在28℃的胚胎直至发展所需的阶段。

6.分析光转换PSmOrange蛋白表达细胞的命运

  1. 下点3.3和3.4中所述重新嵌入胚胎。
  2. 放置共聚焦显微镜下的样品和扫描样本,以确定的利息(488纳米)的GFP转基因结构光转换细胞(640纳米)。
  3. 收购Z堆栈覆盖感兴趣的结构采用488纳米,561纳米和连续模式(行模式1-> 4)640 nm激光。修正1.0和2.0微米之间的z步骤。线平均和扫描频率可用于优化图像质量。
  4. 使用下列方法之一来识别细胞,其共表达GFP和所述光转换蛋白。
    1. 定制自动斐济图片Ĵ宏3
      1. 卷积使用"高斯模糊"插件原来栈(→处理→过滤器→高斯模糊),并减去从原来的使用"图像计算器"插件(→处理→图像计算器)顺利堆栈。使用此步骤可视化感兴趣的结构,并减少计算时间用于分析。
      2. 适用于绿色和远红外通道特定的阈值,以突出的光转换单元(→图像→调整→阈值)。使用"分析粒子"工具,使用合适的设置来检测阈值的区域(→分析→分析颗粒)。
      3. 打开"图像计算器"插件和黄(→处理→图像计算器)显示在绿色和远红外通道重叠的投资回报。
    2. 显微镜图像处理软件的3D数据评估
      1. 显示在堆栈3D使用show量视图选项(→三维可视化菜单→显示卷视图)。使用图形界面来选择绿色,红色和远红色频道,调节亮度,对比度和作物的三维堆叠以突出显示光转换区域( 图1)。
        注意:类似的方法来分析在大多数用于图像分析的通用软件的数据是可用的。

结果

图1示出了PSmOrange光转换系统的一个例子。松果体复杂的是在脊椎动物背间脑的保守结构。像在许多其他脊椎动物中,此复合体由在间脑和左双面parapineal细胞的中心松果体器官。优雅但费时解笼锁的实验表明,parapineal细胞松果体器官13的前部产生。在TG(FOXD3:GFP); TG(FLH:GFP)转基因胚胎,无论松果体和parapineal细胞发育过程中的标签。为了评估PSmOrange?...

讨论

携带荧光记者转基因胚胎有助于从根本上了解胚胎发育。然而,仍然有启动子的基本需要,以促进特定结构的特定的可视化。在他们的缺席,研究人员依靠技术,如荧光蛋白的光转化,了解他们的利益结构的起源和发展。这又是鉴定参与在其发展的分子机制的关键先决条件。在斑马鱼领域的技术进步,现在允许更换FP在方法14,15使用CRISPR-Cas9介导的敲除转基因系与,例如,photoconvertible蛋白?...

披露声明

The authors have nothing to disclose.

致谢

We thank O. Subach for providing the original H2B-PSmOrange plasmid and our fish facility team for fish care. We are grateful to the Nikon Imaging Center at the University of Heidelberg for access to microscopy equipment and analysis software. We acknowledge the support of the Core Facility Live Cell Imaging Mannheim at the CBTM (DFG INST 91027/10-1 FUGG). This work was supported by the Excellenzcluster CellNetworks, EcTop Spatio-temporal coordination of signaling processes (EcTop 2), University of Heidelberg to C.A.B. and the Medical Faculty Mannheim of the University Heidelberg and the DFG (FOR 1036/2, 298/3-1 and 298/6-1) to M.C.

材料

NameCompanyCatalog NumberComments
PCR Purification KitQiagen28104
mMESSAGE mMACHINE SP6 Transcription kitAmbionAM1340
RNeasy MiniElute Cleanup kitQiagen74204
Plastic Pasteuralpha laboratoriesLW4000
Original H2B-PSmOrange PlasmidAddgene31920The plasmid described in the paper is available in the Carl lab
FemtoJet MicroinjectorEppendorf5247 000.013
Forceps (5 Inox)NeoLab2-1633
Lab-Tek II Chambered #1.5 German Coverglass System Nunc155382
Nikon A1R+Nikon GmbH GermanyNo Number
Nikon PLAN Apo λ 20X air objective Nikon GmbH GermanyNo Number
NIS Elements AR Software (v. 4.30.02)Nikon GmbH Germany/Laboratory ImagingNo Number

参考文献

  1. Lombardo, V. A., Sporbert, A., Abdelilah-Seyfried, S. Cell Tracking Using Photoconvertible Proteins During Zebrafish Development. J. Vis. Exp. (4350), (2012).
  2. Subach, O. M., et al. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods. 8, 771-777 (2011).
  3. Beretta, C. A., Dross, N., Bankhead, P., Carl, M. The ventral habenulae of zebrafish develop in prosomere 2 dependent on Tcf7l2 function. Neural Development. 8, 19 (2013).
  4. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 99, 12651-12656 (2002).
  5. Habuchi, S., Tsutsui, H., Kochaniak, A. B., Miyawaki, A., van Oijen, A. M. mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One. 3, e3944 (2008).
  6. McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W., Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nature Methods. 6, 131-133 (2009).
  7. Chudakov, D. M., Lukyanov, S., Lukyanov, K. A. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nature Protocols. 2, 2024-2032 (2007).
  8. Subach, F. V., et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nature Methods. 6, 153-159 (2009).
  9. Patterson, G. H., Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 297, 1873-1877 (2002).
  10. Subach, F. V., Patterson, G. H., Renz, M., Lippincott-Schwartz, J., Verkhusha, V. V. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc. 132, 6481-6491 (2010).
  11. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J Vis Exp. (25), e1115 (2009).
  12. Concha, M. L., et al. Local tissue interactions across the dorsal midline of the forebrain establish CNS laterality. Neuron. 39, 423-438 (2003).
  13. Auer, T. O., Duroure, K., Concordet, J. P., Del Bene, F. CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nature Protocols. 9, 2823-2840 (2014).
  14. Auer, T. O., Duroure, K., De Cian, A., Concordet, J. P., Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research. 24, 142-153 (2014).
  15. Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 322, 1065-1069 (2008).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

108 PSmOrange

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。