Method Article
Here, we present protocols to perform both ambient mass spectrometry imaging (MSI) of tissues and in-situ live single cell MS (SCMS) analysis using the single-probe, which is a miniaturized multifunctional device for MS analysis.
Mass spectrometry imaging (MSI) and in-situ single cell mass spectrometry (SCMS) analysis under ambient conditions are two emerging fields with great potential for the detailed mass spectrometry (MS) analysis of biomolecules from biological samples. The single-probe, a miniaturized device with integrated sampling and ionization capabilities, is capable of performing both ambient MSI and in-situ SCMS analysis. For ambient MSI, the single-probe uses surface micro-extraction to continually conduct MS analysis of the sample, and this technique allows the creation of MS images with high spatial resolution (8.5 µm) from biological samples such as mouse brain and kidney sections. Ambient MSI has the advantage that little to no sample preparation is needed before the analysis, which reduces the amount of potential artifacts present in data acquisition and allows a more representative analysis of the sample to be acquired. For in-situ SCMS, the single-probe tip can be directly inserted into live eukaryotic cells such as HeLa cells, due to the small sampling tip size (< 10 µm), and this technique is capable of detecting a wide range of metabolites inside individual cells at near real-time. SCMS enables a greater sensitivity and accuracy of chemical information to be acquired at the single cell level, which could improve our understanding of biological processes at a more fundamental level than previously possible. The single-probe device can be potentially coupled with a variety of mass spectrometers for broad ranges of MSI and SCMS studies.
Mass spectrometry imaging (MSI) is a relatively new molecular imaging technique to provide the spatial distribution of the compounds of interest on surfaces. During the MSI analysis, mass spectrometry (MS) measurements are recorded across the surface on an individual pixel basis to create a 2D image of the species of interest 1. MSI techniques have the ability to provide a spatially resolved feature distribution for a large range of metabolites, allowing a much greater amount of information to be obtained from a sample than from using traditional molecular imaging techniques, and they have the potential to greatly improve the analysis of biological samples for biological and pharmacology studies 2. MSI can be broadly separated into non-ambient and ambient approaches. The non-ambient MSI analysis techniques, such as matrix assisted laser desorption ionization (MALDI) MS 3 and time of flight secondary ion MS (ToF SIMS) 4, are capable of high spatial resolution (around 5 µm and 100 nm, respectively) and high sensitivity. However, these methods require extensive sample preparation, such as the application of matrix molecules to the sample surface, and a vacuum sampling environment, which could introduce artifacts to the data obtained. Ambient techniques such as desorption electrospray ionization (DESI) MS 5, laser ablation electrospray ionization (LAESI) MS 6, and nano-DESI MS 7 are capable of MSI of samples with little to no prior preparation under the ambient environment, which is able to produce MS images that potentially reflect the sample in its most native state. However, most of these techniques generally lack the high spatial resolution and detection sensitivity compared with the non-ambient techniques, with experiments typically conducted at around 150 µm per pixel 8.
Single cell analysis (SCA) is a growing field that has the ability to characterize the chemical composition of biological samples at the cellular level. SCA enables the analysis of biological systems at a more fundamental level than traditional cell analysis techniques, which produce an averaged result of a population of cells, potentially providing insights that are previously intractable 9. MS techniques have recently been applied to SCA (termed single cell mass spectrometry or SCMS) using non-ambient techniques such as MALDI MS 10 and ToF SIMS 11 in which cells are pretreated before analysis, and with ambient techniques such as LAESI MS 12 and direct extraction methods, such as live single-cell video-MS 13, 14, to analyze a wide variety of cell types such as egg, plant, and cancer. Ambient techniques have the advantage of being applied to live cells, which again minimizes the artifacts, leading to a better representation of the metabolites in the live cells. The direct extraction based methods described above, however, perform the sample extraction and analysis process at two different steps, which result in a time gap during the analysis that could potentially alter the metabolites present within the sample.
The single-probe, a miniaturized multifunctional device that is capable of conducting high spatial resolution ambient MSI on biological tissue sections 15 and near real-time in-situ SCMS on live single cells 16. The single-probe has an integrated construction that is made up of a pulled dual-bore quartz capillary coupled with a solvent providing inlet and a nano-ESI emitter made from fused silica capillaries, enabling solvent delivery and analyte extraction to be performed from a single device. In the ambient MSI mode, the single-probe is placed over the sample tissue and surface micro-extraction occurs, allowing a rastered MS image to be made at high spatial resolution. Particularly, the tapered tip of the single-probe is small enough to be inserted into live eukaryotic cells for in-situ SCMS analysis, where the metabolite detection takes less than two seconds between probe insertion and MS detection, allowing chemical information to be taken in near real-time. Here are the protocols to fabricate the single-probe device and to conduct both the ambient MSI and SCMS modes using the single-probe MS techniques.
动物使用和福利应坚持NIH指南实验动物以下的机构动物护理和使用委员会(IACUC)审查和批准协议的维护和使用。小鼠组织样品通过协作者Chuanbin毛博士提供。
1.鼠标组织切片准备
2.细胞培养
注:在无菌条件下在生物安全柜(生物安全Ⅱ级)进行细胞培养。 HeLa细胞被用作模型系统,以及细胞与下列常规协议完全培养基中培养:
3.单探头制造
4.构建集成的单探头MS安装
5.环境MSI
6. 在现场直播SCMS
单探针成功地用于切片小鼠肾组织15的周围的MSI分析。该装置采用表面液体微萃取( 图1a),它提供了从一个小区域高效的分析物的提取,从而导致在对MSI结果丰富离子信号强度的机制。例如,超过10 7的信号强度已经达到了某些丰富代谢物( 图2a)。以这种方式检测到大量的代谢物,包括一些鞘磷脂(SM)和磷脂酰胆碱(PC)的物种如[SM(34:1)+钠] +(725.5575米/ Z),[PC(32: 0)+ H] +(734.5700米/ Z),[PC(34:1)+钠] +(782.5696米/ Z),和[PC(38:5 + NA)] +(814.5726米/ z)表示 。这些化合物被认定具有较高的质量分辨率和质量准确度加上t表示OA高分辨质谱仪。例如,该识别用小于4ppm的M / Z的质量精确度( 即 ,所观察到的和理论值之间的差异)为每代谢物( 图2b)在结果中这里提出实现。此外,串联质谱分析( 即 ,MS / MS)也被用于感兴趣物种的更自信鉴定进行。15
由于在小区域进行高效液体微萃取的能力,单探针装置可用于环境条件15下进行高空间分辨率的MSI实验。例如,已经获得示出所选代谢物( 图2c)的空间分布小鼠肾切片的详细的MS的图像。该MS图像的空间分辨率被确定为8.5微米,以下具有transiti的广泛使用的度量。在点MS信号的20-80%的强度变化而确定的一个尖锐特征的18磷脂的情况下,[PC(38:5 + NA)] +鼠标肾脏部分,内髓质之间的转换功能和外髓质发生在记时穿过一个扫描周期的地方,呈现出强度变化大于20-80%的范围内。基于样品移动速度(10.0微米/秒)和MS数据采集速率(0.85秒/光谱),将样品移动在一个MS距离扫描周期(8.5微米), 即 ,对MSI的空间分辨率,就可以计算( 图2D)。这种空间分辨率是当中最高的为生物样品进行环境MSI技术尚未实现。
对于SCMS单探头能够实现单个活HeLa细胞16的分析。单探针的尖端尺寸通常小于10微米( 图URE 3a)中,这是足够小,可以直接插入到多种类型真核细胞中的其直径为〜10微米,用于提取和MS分析。单探针针尖到细胞的插入过程可使用数字立体显微镜在视觉上监视( 图3b),和细胞膜穿透可以通过从PBS(或新鲜的细胞培养质谱的快速和显著变化来确认培养基)于细胞内的化合物( 图3c和3d)。该实验可以在正和负离子模式下进行,以检测更广种类的分子种。例如,18个不同的脂质种类在正模式进行了鉴定,包括鞘磷脂(SM)和磷脂酰胆碱(PC),而磷酸腺苷(AMP,ADP和ATP)在负离子模式( 图3c和d)检测。单探针插入我之间的时间延迟n要一个小区和所述信号检测是通常不到两秒钟,使细胞代谢产物的近实时检测。 SCMS还应用于其中细胞用抗癌药( 例如 ,OSW-1,紫杉醇,多柔比星)19]治疗实验。相应的药物可HeLa细胞内后4小时的治疗在一系列浓度( 即 10纳米,100纳米,1微米和10微米)的DMSO(二甲基亚砜),使用未处理的细胞(仅添加DMSO来检测)作为对照。药物的MS信号不是胞外PBS或对照( 图3e)内本,但是使用单探头MS技术(仅100nM的治疗结果示于图3f)的单电池内进行检测。因为细胞用PBS(或新鲜细胞培养基)漂洗,以除去细胞外的化合物和污染物,内源性代谢物( 例如 ,细胞的脂质一个的检测ð磷酸腺苷)和外源性化合物( 例如 ,抗癌药物),表示该单探测器MS技术可用于分析细胞内的化合物。
图1.制备和单探针用于环境MSI和SCMS分析的设置。 一个 )单探针的制作过程。B)附接至载玻片。c)该单的照片一制造的单探头的照片附着到质谱仪。D探测器设置)加上质谱仪单探头设置的示意图。在实验过程中,连续地从注射器中提供的采样溶剂,电离电压从质谱仪施加到导电结合,两种数字显微镜被用来监测样品的位置,电动XYZ台系统是用来控制样品的运动,以及一个质谱仪用于分析。e)该定制数字立体镜系统。 六 )照片显示通过光学板附着到离子源接口凸缘数字立体镜的照片。 请按此查看该图的放大版本。
图2.从高空间和质量分辨率的小鼠肾脏部的周围的MSI研究的结果。a)由单探测器的MSI的代表性质谱。检测到的代谢物能达到3.39×10 7(任意单位)的最大强度。B)检测到的代谢物的选择提出了他们的质量精确度。C)MS的图像[PC(32:0)+ H] +和[PC(34:1)+钠] +在8.5微米的空间分辨率从小鼠肾脏部分采取。 PC:磷脂酰胆碱。比例尺:2毫米; 0.20毫米(插图)的MS图像的空间分辨率d)确定。[38 PC(5)+钠] +(改编许可,从参考15)。 请点击此处查看该图的放大版本。
图3.药物治疗的HeLa细胞具有较高的质量分辨率的环境SCMS分析结果。 一 )放大后的显示直径<10微米的典型尺寸单探头端部的照片。b)照片拍摄于点单探头插入到HeLa细胞。比例尺:50微米。c)与一些PC(磷脂酰胆碱)的物种。 四 )从HeLa细胞均在正离子和负离子模式。EF)质谱用于SCMS分析检测出的代谢物的代表性例子的标识的典型正离子模式质谱控制与处理(100纳米OSW-1)细胞(改编许可,从参考16)。 请点击此处查看该图的放大版本。
图S1。用于生产触点闭合信号,质谱仪收集数据的电子设备的电路图。 请点击此处查看或下载这个数字。
单探针是可同时用于MSI和SCMS实验的多功能设备。单探头设置(包括平移台系统,显微镜,离子源接口凸缘等 )被设计为可灵活地适应于现有的质谱仪的附加 组件。单探头设置和常规ESI离子源之间的快速交换可以在一分钟内完成。原则上,使用适当的离子源接口凸缘,单探头设置可适应于任何其他质谱仪。此外,可以用单探头设置为反应性MSI和SCMS实验,这大大增强了生物分子的更广泛的范围内的检测可以使用含有各种试剂的采样溶剂。除了动物组织和细胞系,该单探测器还能够分析其他生物系统如植物。因此,用相同的实验装置和相似用户培训,可以使用单个仪器中进行的各种研究和用相同的用户,允许高效率和通用性实验将具有最小的训练时间和仪器费用实现。
单探针MS技术的关键组成部分是探针自身。单探头的质量对其性能,这在很大程度上决定了无论MSI和SCMS实验的质量有显著的影响。当制作单探头,确保双孔管内的毛细管牢固地粘到消除溶剂泄漏的实验过程中的机会。它是用紫外线可固化的环氧树脂的最小量,使得该孔和毛细管探针制造过程中不会堵塞的关键。
单探针已被用于在生物样品15进行高空间和质量分辨率环境的MSI。环境MSI的主要优势非环境的方法是,样品的制备是保持在最低,无需真空采样环境,其允许样品在近天然状态8进行分析。其中大多数其它环境MSI技术的主要障碍是缺乏空间分辨率1。与基于解吸相比微星技术(如DESI和LAESI),单探针的小尖尺寸允许小区域里进行的更健壮和有效的表面液体微萃取,导致一个高空间分辨率8.5微米,这是众多使用环境的MSI技术15达到的最高的。此外,调整采样溶剂的组分提供了额外的灵活性来进行实验。例如,抽样含有试剂( 例如 ,双阳离子化合物)的溶剂已被用于执行反应性的MSI的实验中,允许在代谢物确定PE的数目显著增加- [R实验20。单探针的另一优点是集成的设计,这在整个数据采集过程提供了操作方便。因为尖端和组织表面之间的距离为离子信号强度和稳定性,从而获得平的组织切片,并进行表面平坦化调整以最小化的距离方差非常敏感为高品质的MSI实验的关键。它遵循单探针微星技术不适合于获得不平整的表面的高空间MS的图像。
除了制造高品质的探头,仔细调整仪器为成功的MSI实验是必不可少的。在所有调整步骤,调整所述单探针尖端组织切片表面上方的高度是最关键的。当调整探头高度,泵采样溶剂并开启电离电压,使得只有溶剂背景离子信号可OBSERV编辑。然后监视质谱的变化,同时小心地通过提升机动Z台直到可以观察到从组织切片强和稳定的离子信号减少探针表面的距离;此探测器高度将在实验过程中被用于MSI数据集合。此外,优化的溶剂流速为MSI实验是必不可少的。调整用优化探针高度的流速。确保有组织表面上无溶剂扩散( 即 ,流率太高)或纳米ESI发射器( 即 ,流速太低)内气泡的形成。
单探针是用于生物分析的多功能设备。除了 对MSI的实验中,它是能够接近实时原位 SCMS阐明从活真核细胞16详细的化学信息,这是一个主要的优点与其他真空相比导电的基于SCMS技术(如MALDI 10和SIMS 21 )。探针尖端的小尺寸提供了被插入到活真核细胞和提取和电离立即MS分析细胞内的化合物的能力。同样地,可以在该SCMS实验中使用含有试剂( 例如 ,双阳离子化合物)的采样的溶剂,并且可以在比以往一个活的单细胞被检测细胞成分的更广泛的范围(正在进行的研究中,数据未显示)。虽然实时分析将提供活的单细胞由于膜和细胞内容物提取的细胞穿透的化学性质,所研究的细胞将在实验后被杀死,这意味着单探头SCMS技术仍是一个破坏性的方法。另外,探针和纳米ESI发射极中的单探针可以容易堵塞对于没有经验的用户。以降低装置堵塞的机会,确保避免插入单探头插入一个CEL当触摸核湖如果发生堵塞,该装置可以通过加热堵塞探头尖端或纳米ESI发射使用自制的加热线圈16进行再生。单探针SCMS技术的另一个限制是,只有粘合剂的细胞( 即 ,细胞附着于表面)可以用当前的设置进行分析。然而,通过将细胞操纵系统进入单探头MS装置,更广泛类型的细胞可以在将来的研究。
类似的MSI实验,获得高品质的探针和优化的溶剂流速为SCMS的研究是至关重要的。当调谐溶剂流速,单探针尖端放置在样品上方( 即 ,与细胞或培养基不接触),并保证有从探头尖端或纳米ESI内形成气泡无溶剂滴落发射器。
We have no conflict of interest to declare with the work presented here.
The authors would like to thank Dr. Laskin (the Pacific Northwest National Laboratory) for sharing the motorized stage control software and MSI visualization program. We also thank Dr. Mao (the University of Oklahoma) for providing mouse organ samples and Mr. Chad E. Cunningham (the University of Oklahoma) for the assistance in machining and electronics work. This research was supported by grants from the Research Council of the University of Oklahoma Norman Campus, the American Society for Mass Spectrometry Research Award (sponsored by Waters Corporation), Oklahoma Center for the Advancement of Science and Technology (Grant HR 14-152), and National Institutes of Health (R01GM116116).
Name | Company | Catalog Number | Comments |
Single-probe fabrication | |||
Dual bore quartz tubing, 1.120’’ × 0.005” × 12” | Friedrich & Dimmock, Inc, Millville, NJ | MBT-005-020-2Q | |
Micropipette laser puller | Sutter Instrument Co., Novato, CA | Model P-2000 | |
Fused silica capillary, ID: 40 µm, OD: 110 µm | Molex, Lisle, IL | TSP040105 | |
UV curing resin | Prime Dental, Prime-Dent, Chicago, IL, USA | Item No. 006.030 | |
LED UV lamp | Foshan Liang Ya Dental Equipment, Guangdong, China | LY-C240 | |
Epoxy resin | Devcon, Danvers, MA | Part No. 20945 | |
Inline MicroFilter | IDEX Health & Science LLC, Lake Forest, IL | M-520 | |
Microunion | IDEX Health & Science LLC, Lake Forest, IL | M-539 | |
Microscope slide (glass) | C & A Scientific - Premiere, Manassas, VA | 9105 | |
Syringe | Hamilton, Reno, NV | 1725LTN 250UL | |
Mass spectrometer | |||
LTQ Orbitrap Mass sprectrometer | Thermo Fisher Scientific, Inc., Waltham, MA | LTQ Orbitrap XL | |
Xcalibur 2.1 Software | Thermo Fisher Scientific, Inc., Waltham, MA | XCALIBUR21 | |
Fance Stage Control | Pacific Northwest National Laboratory, Richland, WA | ||
MSI QuickView | Pacific Northwest National Laboratory, Richland, WA | ||
Contact closure device | |||
USB-6009 Multifunction DAQ | National Instruments, Austin, TX | 779026-01 | |
DR-5V SDS Relay | Panasonic, Kadoma, Japan | DR-SDS-5 | |
Logic Gates 50 Ohm Line Driver | Texas Instruments, Dallas, TX | SN74128N | |
Single-probe setup | |||
Motorized linear stage and controller (3 sets) | Newport, Irvine, CA | Conex-MFACC | |
Miniature XYZ stage | Newport, Irvine, CA | MT-XYZ | |
Translation XY stage | ThorLab, Newton, NJ | PT1 and PT102 | |
Thermo LTQ XL ion source interface flange | New Objective, Woburn, MA | PV5500 | |
Digital stereo microscope, 250X - 2,000X | Shenzhen D&F Co., Shenzhen, China | Supereyes T004 | |
USB Digital Photography Microscope | DX.com, HongKong, China | S02 25~500X | |
Syringe pump | Chemyx Inc., Stafford, TX | Nexus 3000 | |
Solid Aluminum Optical Breadboard, 8" x 8" x 1/2" | Thorlabs, Newton, NJ | MB810 | |
Flexible clamp holder | Siskiyou, Grants Pass, OR | MXB-3h | |
Solvents | |||
Methol | Sigma-Aldrich, St. Louis, MO | 34860 Chromasolv | |
Water | Sigma-Aldrich, St. Louis, MO | W4502 | |
Acetonitrile | Sigma-Aldrich, St. Louis, MO | 34967 Chromasolv | |
Cell culture | |||
Dulbecco’s Modified Eagle’s Medium (DMEM) | Cellgro, Manasas, VA | 10-013-CV | |
10% heat-inactivated fetal bovine serum (FBS) | Gibco/Life Technologies, Long Island, NY | 10100-139 | |
Penicillin/Streptomycin | Cellgro, Manasas, VA | 30-002-CI | |
10 mM HEPES (pH 7.4) | Cellgro, Manasas, VA | 25-060-CI | |
Phosphate Buffered Saline (PBS) | Cellgro, Manasas, VA | 46-013-CM | |
TrypLE Express | Thermo Fisher Scientific, Waltham, MA | 12604-013 | |
12-well plates | Corning Inc., Corning, NY | Falcon 351143 | |
T25 flask | Corning Inc., Corning, NY | Falcon 3055 | |
Micro Cover Glasses, Round, No. 1 | VWR International, Radnor, PA | 48380-046 | |
DMSO (Dimethyl Sulfoxide) | VWR International, Radnor, PA | BDH1115-1LP | |
Tissue imaging | |||
Cyro-Cut Microtome | American Optical Coporation | ||
Tissue-Tek, Optimum cutting temperature (OCT) | Sakura Finetek Inc., Torrance, CA | 4583 | |
Microscope slide (polycarbonate) | Science Supply Solutions, Elk Grove Village, IL | P11011P |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。