JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

微RNA起重要的调节作用,并正在成为关于各种人类疾病新的治疗目标。它已经显示,微RNA在高密度脂蛋白携带。我们已经开发出一种简化方法迅速隔离适用于从人血浆中的miRNA分析纯化HDL。

摘要

Small non-coding RNAs (miRNAs) have been implicated in a variety of human diseases including metabolic syndromes. They may be utilized as biomarkers for diagnosis and prognosis or may serve as targets for drug development, respectively. Recently it has been shown that miRNAs are carried in lipoproteins, particularly high density lipoproteins (HDL) and are delivered to recipient cells for uptake. This raises the possibility that miRNAs play a critical and pivotal role in cellular and organ function via regulation of gene expression as well as messenger for cell-cell communications and crosstalk between organs. Current methods for miRNA isolation from purified HDL are impractical when utilizing small samples on a large scale. This is largely due to the time consuming and laborious methods used for lipoprotein isolation. We have developed a simplified approach to rapidly isolate purified HDL suitable for miRNA analysis from plasma samples. This method should facilitate investigations into the role of miRNAs in health and disease and in particular provide new insights into the variety of biological functions, outside of the reverse cholesterol transport, that have been ascribed to HDL. Also, the miRNA species which are present in HDL can provide valuable information of clinical biomarkers for diagnosis of various diseases.

引言

MicroRNAs are endogenous non-coding tiny RNA species that are highly conserved and are considered key players in the regulation of various biological processes by degrading or repressing specific target messenger RNAs1. Because miRNAs act intracellularly they have been explored as tissue-derived biomarkers which led to the discovery of tissue-specific functions of these miRNA. However, miRNAs are also found extracellularly either associated with proteins or in exosomes/micro vesicles that effectively can shield them from degradation by extracellular RNases2. More recent studies have shown that the protective effect of HDL may not be closely linked to its capability to promote cholesterol efflux but rather to its non-cholesterol cargo, in particularly as a circulating miRNAs carrier 3, 4. These miRNAs may not only modulate lipid metabolism but are also associated with anti-inflammatory, antioxidant and antithrombotic effects of the HDL-miRNA complex 5, 6.

To further explore the role of miRNAs carried in HDL particles, a simple and easy protocol needs to be established for miRNA extraction from isolated highly purified HDL for use in clinical routine. Numerous methods have been described to isolate HDL. These methods are either very time consuming or require large volume of plasma that may require sample pooling, extensive dialysis for desalting isolated lipoproteins and they do not completely remove exosomes as a source of miRNAs3, respectively. Here we describe a simple and rapid method that can isolate miRNA from highly purified HDL utilizing small volume of blood samples on a larger scale. We believe that this method may serve as good reference to promote research into the role of circulating miRNAs and in particular the role of HDL in facilitating communication between various cells and organs.

研究方案

1.采集血样

  1. 收集空腹外周静脉血样品到含有通过在肘窝的一个突出静脉标准静脉穿刺抗凝乙二胺四乙酸(EDTA)(其比其它抗凝剂有几个优点)在10毫升的塑料管中。
  2. 离心血液样品在1600×g离心20分钟,在4℃下在台式离心机,以获得自由的红血细胞和少量的RNA的等离子体。
  3. 依次离心上清在吊桶式转子3000克(4℃)10分钟,以除去白细胞和血小板,然后附加15分钟以分别除去残留的细胞碎片。
  4. 用在RT密度计根据生产指令测量等离子体的密度。
    注:密度调节(D =1.023克/ ml)的0.9%生理盐水溶液可以去除外来的,但之前的密度梯度超速离心后是必需的。

2.从血浆中去除的外来体

  1. 删除循环外来体具有类似高密度脂蛋白的密度,代表的miRNA 3的定量显著来源。
    1. 通过加入252微升外切体沉淀溶液至1毫升血浆温育30分钟,在4℃下执行此操作。以沉淀出外来体,离心混合物30分钟,在4℃1500克。
    2. 以分离的HDL,将所得上清转移1ml至聚碳酸酯厚壁超速离心管,以便进一步处理用密度梯度超速离心(见下文)。

3.密度梯度超速离心(图1)。

  1. 到单独的HDL使用采用具有一个固定角转子以448811×G下8℃,分别操作和地板超速离心机3步骤的过程。
  2. 准备了三种不同密度解决方案顺序和新鲜的每个隔离。
    1. 制备溶液A(VLDL的隔离峰,d = 1.006克/毫升)将11.4克NaCl(氯化钠:0.195摩尔)1000毫升高压灭菌蒸馏水,0.1g的EDTA2Na和1ml 1N NaOH中。然后添加一个额外的3毫升蒸压蒸水。
    2. 准备溶液B(LDL隔离,D =1.182克/毫升)加入25.2克溴化钠至100毫升溶液A(氯化钠0.195摩尔,溴化钠2.44摩尔)。
    3. 通过混合78.8克溴化钠用100毫升的溶液A(氯化钠0.195摩尔,溴化钠7.7摩尔)准备论文C(高密度脂蛋白的隔离,D =1.470克/毫升)。确认在室温下用密度适当的密度。保留所有的解决方案在4°C,直到进一步使用。

4.隔离的VLDL

  1. 混合1毫升血浆(平均密度= 1.023克/毫升)和无核酸酶的200微升发红色7B的在6.5毫升聚碳酸酯厚壁超速离心管。
  2. 然后小心层上的混合物前5 ml溶液A的。如果需要,在求解的T顶部增加额外的脂肪红7B直径:平衡每个管的重量。离心2小时(加速度 - 5),(减速 - 7)。
    注:在离心分离中,脂蛋白被累积作为它们的平衡密度区域的频带。
  3. 在运行的端部观察2层。除去1.5毫升代表在4℃的顶层和商店的VLDL级分。
  4. 最后,用移液管转移从管的含有低密度脂蛋白的底面4毫升,高密度脂蛋白,白蛋白和脂肪酸馏分为LDL隔离一个新的聚碳酸酯管。

5.隔离的LDL

  1. 混合溶液2ml B和100微升不含核酸酶的脂肪红7B的成含有LDL和HDL级分(第4部分)的管,分别。
  2. 然后离心进行3小时(加速9,减速7)。此后,除去1.5毫升代表顶层LDL部分的,并保持在4℃或储存在-80℃。最后,从管的含有高密度脂蛋白的底部转移4毫升部分,以一个新的聚碳酸酯管。

6.隔离的HDL

  1. 混合溶液2ml的C,100微升不含核酸酶的脂肪红7B和15微升98%β巯基乙醇的到含有HDL馏分分别在管。
  2. 离心3小时(加速9,减速7)。然后除去2-毫升HDL馏分表示顶层,要么保持在4℃或储存在-80℃。

7.脱盐和脂蛋白成分浓度

  1. 以避免与随后的琼脂糖凝胶电泳和PCR的干扰,删除使用由制造商的说明用适当的分子量截留(3K管VLDL和10K管的LDL / HDL)的离心过滤装置密度梯度超速离心期间加入过量的盐。
    1. 简言之,加入2.5毫升冷的PBS(137 mM氯化钠,2.7毫KCL,8毫磷酸氢二钠,2毫KH 2 PO 4; pH 7.4)中后centrifu戈整个VLDL级分收集,在密度梯度超离心在4℃下使用吊桶式转子60分钟。
    2. 用10ml冰冷的PBS脱盐LDL部分两次,每次30分钟。接着,使用13毫升冰冷的PBS两次脱盐HDL级分。较高的PBS体积是必要改善与琼脂糖凝胶电泳迁移率。离心后,取出含有溶质脂蛋白,并保持在4℃或储存在-80℃。

8.琼脂糖凝胶电泳

  1. 亲热采用与制造商的说明稍作修改如下所述试剂盒脂蛋白琼脂糖凝胶电泳。
    注:该步骤是只评估浓缩脂蛋白样品的质量和纯度。
    1. 简言之,获得6微升脱盐脂蛋白馏分与密度梯度超速离心,并加载到预浇铸脂蛋白凝胶。使用人类lipoprotein标准VLDL,低密度脂蛋白和高密度脂蛋白的尺寸参考。进行电泳在RT在100V供使用Rep准备缓冲器60分钟。
    2. 干燥凝胶10分钟,然后染色在室温10分钟以脂肪红7B。脱色的甲醇 - 水75:25(体积/体积)和干燥的5分钟的混合物再次凝胶。

9. RNA提取与纯化

  1. 使用血清/血浆的miRNA分离和纯化试剂盒由纯化的人HDL亲热的miRNA的隔离。
    1. 简言之,加入1ml RNA裂解试剂200微升纯化的高密度脂蛋白,用涡旋混合,然后在室温下孵育5分钟以确保核蛋白复合物和RNA酶失活的完全分离。
    2. 然后穗3.5微升合成线虫的microRNA(CEL-的miR-39; 1.6×10 8个拷贝/微升)到混合物中。然后根据制造商的说明书进行RNA提取。
  2. 执行purificati上提取的体miRNA与洗脱旋转柱按照生产商的说明。测量的miRNA从与spectrophorometer纯化的高密度脂蛋白的浓度。
    注意:从自旋列的miRNA的洗脱使用16微升的无RNase水。

10.反转录(RT-PCR)

  1. 隔离100ng的所述miRNA从HDL的掺有合成的miRNA(CEL-的miR-39),并在使用逆转录试剂盒,并根据制造商的说明20微升反应体积逆转录。
  2. 没有模板的miRNA(NTC)和无逆转录酶混合物(NRT)进行适当的控制。

11.实时PCR(定量RT-PCR)

  1. 2稀释的cDNA,10微升PCR混合物,2微升的通用引物,2微升的miRNA的引物和4微升不含RNA酶的水:在20微升用2微升1的总体积亲热实时PCR。
  2. 运行reacti对在95℃下15分钟,96孔板,随后为15秒和55℃30秒和在70℃的延伸相对于30 45个循环的94℃s.ec亲热一式三份所有反应。
  3. 接着,的miRNA Calcuate相对量通过使用2-ΔΔ的Ct方法正常化到合成持家基因按制造商的说明之后。

结果

高密度脂蛋白的分离外来体切除后
从高度纯化的HDL获得miRNA的有必要删除代表的miRNA污染7的来源的外来体。这是之前的密度梯度超速离心用市售的试剂盒进行。为了实用目的由商业公司开发的三步标准密度梯度超速离心协议被修改( 图1)。此协议需要与140000 rpm的速度的固定角转子,其比用离心力常用协议基本上快高达5...

讨论

从血液新型生物标志物的鉴定将在各种疾病的临床诊断和预后提供帮助。微RNA已经已知具有生物标志物的所有品质,并在各种研究14-17都被显示。在这项研究中,我们已经证明快速,简便容易的方法从血浆HDL隔离的miRNA。 VLDL,LDL和HDL的隔离的常规密度梯度超离心方法取决于等离子体的精确采样,缓冲溶液的精确配制,密度和底部脂蛋白馏分8的定量转移的测量。有已经描述分离的HD...

披露声明

作者什么都没有透露。

致谢

This work was supported, in whole or in part, by NIH Grants R01 AA 020758-04, U01DK 061731-13 and T32 DK 007150-38 to AJS and T32 DK 007150-38 to AA. This is original work and is not under consideration elsewhere for publication.

材料

NameCompanyCatalog NumberComments
Plastic Vacutainer Lavender K2EDTA tubes Becton, Dickinson and Company366643
CentrifugeThermo Scientific, Sorvall Legend X1R 75004261
Densito 30PX densitometerMettler ToledoMT51324450
ExoQuick solution Invitrogen4484451
Polycarbonate thick-walled ultracentrifuge tubeThermo ScientificO3237
Sorvall WX100 ultracentrifuge Thermo Scientific46902
Fat Red 7B Sigma-Aldrich201618
β-mercaptoethanol Sigma-Aldrich
Amicon Ultra-15 Centrifugal filter devices 10KMilliporeUFC901008
Amicon Ultra-centrifugal filter devices 3KMilliporeUFC800308
QuickGel Lipo kit Helena Laboratories 3344,3544T
Human lipoprotein standards for VLDL, LDL and HDLLipoTrol; Helena Laboratories5069
Rep Prep buffer Helena Laboratories 3100
RNeasy MinElute spin columns Qiagen
NanoDrop 1000 analyzerThermo Scientific
miScript II RT Kit Qiagen218161
CFX96 Touch real-time PCR detection systemBioRad
miRNeasy Serum/Plasma KitQIAGEN217184
miScript Primer AssaysQIAGEN141078139
miScript SYBR Green PCR Kit QIAGEN218073
miRNeasy Serum/Plasma Spike-In ControlQIAGEN219610
NaOHSIGMA-ALDRICH480878
0.20 µM sterile syringe filterSIGMA-ALDRICHZ227536

参考文献

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116 (2), 281-297 (2004).
  2. Arroyo, J. D., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 108 (12), 5003-5008 (2011).
  3. Vickers, K. C., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 13 (4), 423-433 (2011).
  4. Wagner, J., et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 33, 1392-1400 (2013).
  5. Wang, L., et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol. 33 (10), 1956-1964 (2013).
  6. Rayner, K. J., Moore, K. J. MicroRNA control of high-density lipoprotein metabolism and function. Circ Res. 114 (1), 183-192 (2014).
  7. Raposo, G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 16 (4), 415-421 (2004).
  8. Redgrave, T. G., Roberts, D. C., West, C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 65, 42-49 (1975).
  9. Foreman, J. R., et al. Fractionation of human serum lipoproteins by single-spin gradient ultracentrifugation: quantification of apolipoproteins B and A-1 and lipid components. J Lipid Res. 18, 759-767 (1977).
  10. Dong, J., et al. Serum LDL- and HDL-cholesterol determined by ultracentrifugation and HPLC. J Lipid Res. 52, 383-388 (2011).
  11. Tong, H., Knapp, H. R., VanRollings, A. low temperature flotation method to rapidly isolate lipoproteins from plasma. J Lipid Res. 39, 1696-1704 (1998).
  12. Fless, G. M., ZumMallen, M. E., Scanu, A. M. Physicochemical properties of apolipoprotein (a) and lipoprotein (a-) derived from the dissociation of human plasma lipoprotein (a). J Biol Chem. 261, 8712-8718 (1986).
  13. Brownie, J., et al. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25, 3235-3241 (1997).
  14. Alton, E., Inyoul, L., Leroy, H., David, G., Kai, W. Extracellular microRNA: a new source of biomarkers. Mutat Res. 717 (1-2), 85-90 (2011).
  15. Stefanie, S. J. Cancer biomarker profiling with microRNAs. Nature Biotechnology. 26, 400-401 (2008).
  16. Prasun, J. M. MicroRNAs as promising biomarkers in cancer diagnostics. Biomarker Research. 2 (19), (2014).
  17. Creemers, E. E., Tijsen, A. J., Pinto, Y. M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?. Circ Res. 110, 483-495 (2012).
  18. Jonathan, S., Martin, S., Eric, L. . miRNA profiling from blood -challenges and recommendations. , (2015).
  19. Francesco, M., Paola, D. C., Anna, T., Jesper, T., Sergio, A., Riccardo, L. R. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief Bioinform. 3, 1-9 (2015).
  20. Chen, Y., et al. Circulating microRNAs, novel biomarkers of acute myocardial infarction: a systemic review. World J Emerg Med. 3, 257-260 (2012).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

113 RNA

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。