Method Article
常规的方法以引发人多能的悬浮聚合基于心脏分化干细胞(hPSCs)的困扰与培养异质相对于聚集体的尺寸和形状。在这里,我们描述了采用微孔产生大小控制HPSC心脏推进的条件下培养聚集心脏分化一个可靠的方法。
Cardiac differentiation of human pluripotent stems cells (hPSCs) is typically carried out in suspension cell aggregates. Conventional aggregate formation of hPSCs involves dissociating cell colonies into smaller clumps, with size control of the clumps crudely controlled by pipetting the cell suspension until the desired clump size is achieved. One of the main challenges of conventional aggregate-based cardiac differentiation of hPSCs is that culture heterogeneity and spatial disorganization lead to variable and inefficient cardiomyocyte yield. We and others have previously reported that human embryonic stem cell (hESC) aggregate size can be modulated to optimize cardiac induction efficiency. We have addressed this challenge by employing a scalable, microwell-based approach to control physical parameters of aggregate formation, specifically aggregate size and shape. The method we describe here consists of forced aggregation of defined hPSC numbers in microwells, and the subsequent culture of these aggregates in conditions that direct cardiac induction. This protocol can be readily scaled depending on the size and number of wells used. Using this method, we can consistently achieve culture outputs with cardiomyocyte frequencies greater than 70%.
在体外细胞培养可以在若干方式来进行,但通常是在二维粘附条件下或在三维悬浮条件, 在体内系统更充分地概括进行。因此有在研究许多领域有增多的趋势,开发用于产生三维组织构建稳健方法。在细胞类型和过程需要一个支持细胞外基质(ECM)的表面和粘合信号方案,三维培养物可通过脚手架构建体,其中细胞培养上或外源支撑基质1被启用。细胞和过程不要求到一个支持性基质的粘附可以在悬浮液作为主要或专门细胞(然后它可进行到产生自己的内源矩阵)2,3构成unscaffolded系统来进行。在这里,我们提出了心脏分化邻协议˚F人多能干细胞(hPSCs - 源于胚胎或其他来源能够变成在体内的任何细胞类型的细胞,无论是)的大小控制的,均匀的,unscaffolded聚集体。
hPSCs悬浮聚集的分化是由两个内运行和运行之间的骨料粒径大的变化的困扰。这种变化典型地是用于产生这些聚集体的方法,其中涉及细胞集落的机械解离的结果。为了减少这种可变性,已经使用许多方法来控制每个聚集体的细胞数,以及聚集体直径和均匀性。实例包括形成聚集在离心管4或者作为悬挂滴5,图案化限定二维HPSC菌落6然后可以传输到悬浮液中,或细胞的离心分离成U或V形底的多孔板7,8 9。然而,所有这些APPRoaches由其总代的吞吐量较低的限制。好为基础的系统使用类似的方法来V形底板系统,然而微孔的小尺寸(在这个协议中,每个具有400微米的宽度),使较大的均匀的聚集体的数目的产生从单个培养板孔比将从整体V型底板10中产生(的〜含15.5毫米〜1200微孔标准口径)。以及基于聚集体的形成已在许多设置包括hPSCs分化被用来外胚层11,内胚12,中胚层13和胚外14命运;间充质干细胞软骨15;代毒理学筛查16均匀基板;和力学生物学17调查。
在开发强大的制造协议,生产HPSC衍生cardiom的一个重大挑战yocytes一直缺乏运行之间的心脏分化效率的重现性。我们以前表明,这种变化可以在开始HPSC人口,包括表达与内胚层和神经分化6,18相关的基因都自我更新的hPSCs和分化细胞归因于异质性。这些分化细胞分泌的信号影响心脏感应。具体来说,胚外内胚层促进心脏感应,而神经祖细胞抑制心肌细胞的诱导。在HPSC聚集,聚集分化中的细胞和组织,使得未分化hPSCs是由聚合表面13上开发胚外内胚层细胞层包围。通过控制聚集体尺寸,就可以调节心脏诱导内胚层细胞向未分化hPSCs(表面积与体积之比)的比例和优化该比对最大心脏感应13。
1.培养基成分制备
2.微孔板的制备
注意:所有步骤应在生物安全柜中进行。
3. HPSC形成聚集体的微孔板
注意:所有步骤应在生物安全柜中进行。
4.心脏感应第1阶段
5.心脏感应阶段2
6.心脏诱导第3阶段
心肌肌钙蛋白T(cTnT)的微孔文化输出的频率表达7.流式细胞仪分析
hPSCs的大小控制的聚集体可以有效地利用微孔系统中,仅取决于细胞的浓度和微孔的表面积来形成。以下一个短暂离心,将细胞的适当的数字(1000在这个协议)在每个微孔( 图1A)汇聚。重要的是,这些细胞重新建立连接内24小时之内,不应再填写好,但表现为边缘光滑( 图1B)紧凑聚集。这些聚集提供了对心脏的命运进一步分化的原料。如果细胞不能形成紧密的簇,这表明如下的解离和再聚集可能的细胞死亡,和单细胞传代和ROCK抑制剂浓度的对特定细胞系的适宜应检查。以下三天显示微孔合计形态变化不大呆呆,虽然有些增长是显而易见的。当从微孔移除,聚集体应保持其圆形,紧凑的形态并成为一个类似尺寸彼此( 图1C)的。在ULA 24孔板培养将允许进一步细胞扩增和生长。
由第8天,暴露第一至活化素信号传导,和Wnt抑制后,聚集体将开始显示为更大和更亮的聚集体( 图1D)。在此期间,相当大的细胞碎片将在每个孔的底部明显,并且必须通过允许聚集体去除介质之前沉降除去。偶尔,许多聚集会融合在一起。这不会抑制在阱其他聚集体的分化,虽然这些"超级集合"倾向于不呈现具有较小的聚集体看到的形态变化,而且不太可能经历完整的分化。
"jove_content"FO:保持-together.within页="1">续分化导致具有增加的大小和有组织的纤维区域的外观显着的形态变化到聚集体。通过12天收缩聚集体可以观察到。这些将始终由大,透明细胞和通常包括集合体( 图2)的外广泛的细胞外基质。而聚合的全收缩指示成功分化,心脏标志物的表达,也可以在不出现收缩聚集体观察。以下聚集体和免疫标记的离解,一大部分细胞将是积极为心肌细胞标记物的cTnT通过流式细胞术( 图3)。此标记的表达是在细胞中稳定,并且可以在聚集体迟分化第19天被观察到。
1.JPG"/>
图1:HPSC的时间轴朝心脏命运分化汇聚后,立即细胞几乎占满每个微孔(A)。一天后,这些聚集体出现冷凝和光滑(B)。即使当聚集体从微孔取出并铺板于孔板(C)的这种形态存在。由第8天,聚集体开始膨胀,并且出现在色(D)的打火机。比例尺:250微米请点击此处查看该图的放大版本。
图2:聚集由分化的第12天开始缔约心脏诱导阶段3培养基六天,观察有力骨料全收缩后(上图:放松通货膨胀,中间面板:收缩)。下部面板从减去上部和中部板衍生出来的,表现为黑色或白色(箭头)最显著差异。比例尺:250微米请点击此处查看该图的放大版本。
图3:免疫标记的心肌肌钙蛋白T在分化hPSCs 17岁的一天,大部分细胞呈阳性,流式细胞仪(填充柱状图)肌钙蛋白T。同时显示只用二抗(未填充柱状图)染色的细胞。 请点击此处查看该图的放大版本。
已经观察到该多能干细胞的有效心脏分化是高度可变的过程。虽然这是不奇怪的不同的细胞系表现出分化能力的特定细胞类型不同的倾向,已观察到心脏分化效率使用相同的细胞系6次复制之间急剧波动。这里所描述的协议通过直接控制每个聚集体的输入细胞数解决了这个变异性的一个主要来源。为了进一步降低运行间变异性,则建议适于单细胞传代HPSC线被使用,因为这种形式的更一致的多潜能的人群相对于多能性标记的表达频率( 例如 ,Oct4的,Nanog的HPSC扩展和维护的结果, TRA-1-60, 等 )。
这里写的协议规定1000细胞邻的骨料粒径ptimal心脏感应从HES-2胚胎干细胞系。应用此协议不同的细胞系,这是至关重要的初始聚集体尺寸屏幕来执行,以确定细胞系特异性最佳聚集体尺寸。虽然它没有直接影响的程序在这里随后,我们提醒改变在聚集体尺寸和整体细胞密度预期影响氧气输送读者。这可能会成为在下游应用相关的考虑因素。此外,凋亡性细胞死亡是hPSCs到单个细胞的解离过程中一个问题。因此,重要的是确保ROCK抑制剂是在微孔被迫细胞聚集过程中存在。最后,这是至关重要的分化第4天的聚集体是公洗涤以除去痕量活化素A,存在于感应1培养基,在诱导2培养基再悬浮之前。分化的第4天之后,激活素A促进内胚层分化在中观的代价真皮感应20。
该技术的主要应用是筛选促进高效心脏分化聚集体尺寸。然而,目前的技术的局限性之一是,它是具有挑战性的比例心脏生产使用微孔板临床相关水平。心脏分化的规模达在搅拌的生物反应器21批量培养条件下典型地进行。因此,一旦微孔系统已被用于确定可接受的聚集体尺寸的范围为高效心脏感应,下一步扩大规模是确定生物反应器叶轮的速度,可以产生所需的细胞聚集体尺寸。
一个这种技术相对于其它方法用于基于聚合心脏分化的显著差异是,它使直接调查调制在聚集体的内源信号的影响以及在集合体13感应/抑制组织类型与hPSCs的共培养。这些类型的调查可以通知大规模心动生产工艺开发。
M.U. has a financial interest in the underlying microwell technology.
We thank Dr. Peter Zandstra, in whose laboratory this protocol was developed, and Drs. Mark Gagliardi and Gordon Keller who provided assistance in establishing the initial methods on which this process was based. Protocol development was supported by an Ontario Graduate Scholarship in Science and Technology to C.B. and a grant from the Heart and Stroke Foundation of Ontario to Peter Zandstra.
Name | Company | Catalog Number | Comments |
Biological safety cabinet | |||
Pipette aid | |||
Serological pipettes (5 to 25 ml) | |||
Aspirator | |||
Aspirator or Pasteur pipettes | |||
15 and 50 ml conical tubes | |||
Fume hood | |||
0.22 µm syringe filter | |||
5% CO2, 5% O2, and humidity controlled cell culture incubator | Hypoxic (low oxygen) incubator | ||
5% CO2, 20% O2, and humidity controlled cell culture incubator | |||
Low speed centrifuge with a swinging bucket rotor fitted with a plate holder | |||
P2, P20, P200, and P1000 micropipettors and associated tips | |||
Inverted microscope with 4X, 10X and 20X phase objectives | |||
Ultra-Low Attachment (ULA) 24 well plates | Corning/Costar | 3473 | |
1.5 ml microcentrifuge tubes | |||
Bench-top microcentrifuge | |||
L-Ascorbic Acid | Sigma-Aldrich | A4403 | |
Sterile Ultrapure distilled water | Sigma-Aldrich | W3500 | |
Vortex | |||
Ice | |||
-20 °C freezer | |||
Monothioglycerol | Sigma-Aldrich | M6145 | Toxic; Aliquoting of MTG is strongly recommended to minimize oxidation due to repeated opening. Aliquots can be stored at 4 °C for up to 3 months, -20 °C is recommended for long-term storage. |
StemPro-34 Medium | Thermo Fisher Scientific | 10639-011 | Basal Cardiac Induction Medium; The supplement is stored at -20 °C and the basal medium at 4 °C. |
Transferrin | Roche | 10652202001 | |
BMP-4 | R&D Technologies | 314-BP | |
bFGF | R&D Technologies | 233-FB | |
VEGF | R&D Technologies | 293-VE | |
Activin A | R&D Technologies | 338-AC | |
IWP-2 | Reagents Direct | 57-G89 | |
Phosphate buffered saline (PBS) | Thermo Fisher Scientific | 14190 | |
Bovine Serum Albumin (BSA) | Thermo Fisher Scientific | 15561 | |
Hydrochloric acid | Sigma-Aldrich | 258148 | Corrosive |
Dimethylsulfoxide (DMSO) | Sigma-Aldrich | D2650 | |
DMEM/F-12 | Thermo Fisher Scientific | 12660 | |
100x Penicillin/Streptomycin | Thermo Fisher Scientific | 15140 | |
100x L-glutamine | Thermo Fisher Scientific | 25030 | |
Knockout Serum Replacement | Thermo Fisher Scientific | 10828010 | |
TrypLE Select | Thermo Fisher Scientific | 12563 | Dissociation enzyme |
Hemocytometer | |||
Trypan Blue | |||
Aggrewell 400 plates | StemCell Technologies | 27845 | Microwell Plates |
Aggrewell Rinsing Solution | StemCell Technologies | 7010 | Microwell Rinsing Solution |
Y-27632 ROCK Inhibitor | Tocris | 1254 | |
Collagenase Type II | Sigma-Aldrich | C6885 | |
Hank's Balanced Salt Solution | Thermo Fisher Scientific | 14025092 | |
Fetal Bovine Serum | Thermo Fisher Scientific | 12483 | |
96 well plate (for FACS staining) | |||
Intraprep Permeabilization Reagent | Beckman Coulter | IM2389 | Kit with 2 parts: Fixation Solution and Permeabilization Solution; Toxic |
cTnT antibody | Neomarkers | MS-295 | |
goat anti-mouse-IgG APC antibodyThermoFisher | Molecular Probes | A865 | |
5 ml round bottom flow cytometry tubes | FACS machine dependent |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。