JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

通过同时使用几种方法研究了短期阻力训练对老年人的影响。与对照组相比,观察到许多改善,包括肌肉需氧能力,葡萄糖耐量,强度,功率和肌肉质量( 涉及细胞信号和肌纤维组成的蛋白质)。

摘要

该方案描述了同时使用广泛的方法来检查执行短期抵抗训练(RET)的老年人的肌肉有氧能力,葡萄糖耐量,强度和功率。 RET参与者(71±1年,范围65-80)在8周内每周三次监督进行性进行性阻力训练。与没有训练的对照组相比,RET显示了用于指示强度,功率,葡萄糖耐量和肌肉有氧能力的几个参数的措施的改善。在健身房里进行强度训练,健身器材只有健壮的健身器材。用于膝盖伸肌强度的等动力测力计允许测量同步,偏心和静态强度,其为RET组增加(8-12%后和预测试)。在起始0-30毫秒的功率(力发展速度,RFD)也显示出RET组增加(52%)。葡萄糖耐量试验与frequent血糖测量结果显示,RET组在2 h(14%)和曲线下面积(21%)之间的血糖值方面均有改善。血脂异常也有所改善(8%)。从使用组织化学制备的肌肉活检样品中,IIa型纤维的量增加,RET组中IIx的下降趋势反映了纤维组成的氧化性变化。在RET组中,蛋白质印迹(用于确定与肌肉蛋白质合成的信号传导相关的蛋白质含量)在Akt和mTOR中都显示出69%的升高;在RET组中,这也显示OXPHOS复合物II和柠檬酸合酶(均为〜30%)和复合IV(90%)的线粒体蛋白质增加。我们证明这种进行性抵抗训练提供了各种改进( 例如强度,功率,有氧能力,葡萄糖耐量和血浆脂质分布)。

引言

老化与肌肉质量(肌肉减少),力量和功率的丧失有关。力量减弱,甚至更重要的是力量,导致不动,受伤风险增加,生活质量下降。抵抗训练是消除肌肉减少和肌肉功能恶化的一个众所周知的策略。肌肉力量的粗略估计可以从负载或实现的重复次数获得。然而,这项研究使用等动力测力仪获得关于肌肉功能的更详细和准确的信息,以收集关于等轴,同心和偏心收缩的扭矩信息以及力发展的动力学。

在全身水平(VO 2max )和骨骼肌中的有氧能力在老年人中减少。心率随年龄的下降解释了VO 2max 1减少的很大一部分,但减少了明显的氧化能力,主要与身体活动减少有关2 ,确实有贡献。线粒体功能受损也可能参与肌肉减少症和胰岛素抵抗的发展3 。通过生物化学分析位于基质( 柠檬酸合成酶)和内线粒体膜中的线粒体酶和蛋白质复合物的含量,在肌肉活检中评估肌肉需氧量。此外,组织化学技术用于测量阻力训练对肌肉形态的影响( 纤维类型组成,纤维横截面积和毛细血管密度)。评估肌肉需氧能力的另一种方法是使用磁共振波谱法测量运动诱导的耗竭后肌酸磷酸盐再合成的速率4 。该方法提供了体内肌肉有氧能力的估计但不能区分线粒体功能障碍和循环系统疾病。此外,设备的高成本限制了在大多数实验室中使用这种技术。 5岁以上老年人耐力运动可以改善有氧能力(VO 2max和线粒体密度)。然而,阻力训练对这些参数的影响较少,特别是在老年受试者中,结果相互矛盾7,8,9,10

2型糖尿病是老年人普遍存在的疾病。身体不活动和肥胖是解释2型糖尿病发病率增加的主要生活方式相关因素。低强度有氧运动通常被推荐给具有降低葡萄糖耐量的受试者。但是,这是不对的老年人力量训练如何影响葡萄糖耐量/胰岛素敏感性11,12 。测量胰岛素敏感度的最准确的方法是使用葡萄糖钳夹技术,其中血糖在升高的胰岛素13的条件下通过葡萄糖输注保持恒定。这种技术的缺点是耗时和侵入性(动脉导管插入),需要特殊的实验室设施。在这项研究中,使用了在医疗保健单位中常见的口服葡萄糖耐量试验。这种方法适用于若干受试者在有限的时间内进行调查。

实验程序的测试和时间表可概括如下。使用三个不同的日期进行测试,在八周期间之前和之后,具有相同的安排和大致的时间表(每天≥24小时,< strong>图1)。在第一个测试日,测量:人体测量数据,如身高,身体质量,无脂肪质量(FFM)和大腿周长( 即,轻度仰卧位顶点髌骨上方15 cm);次最大循环能力;和膝关节肌肉力量,如步骤4和5所述。在第二次测试当天从大腿进行肌肉活检。有关进一步说明,请参阅步骤6.1。在最后一个测试日测试口服葡萄糖耐量(OGTT)。有关进一步说明,请参阅步骤7.1。要求所有参与者避免24小时的体力活动,并在每个测试日之前快速过夜。然而,要求他们在OGTT测试日前48小时避免剧烈的身体活动。要求他们遵循正常的日常体力活动和饮食习惯。请注意,干预前和干预后,两组自我报告的食物摄入量和食物类型均未变化。

figimg"src ="/ files / ftp_upload / 55518 / 55518fig1.jpg"/>
图1:实验方案。原理图,示意图。每个受试者之间的三个测试前和测试后的时间是相似的,并且至少24小时。更多细节在文中给出。这个数字已经从Frank 等人修改SCAND。 J.Med。科学。体育 2016:26,764-73。 28 请点击此处查看此图的较大版本。

本研究旨在调查老年人短期抵抗训练对肌肉氧化能力和葡萄糖耐量的影响。第二个目的是检查对力量,力量和肌肉质量改善的影响( 参与细胞信号传导和肌纤维组成的蛋白质)。

研究方案

瑞典斯德哥尔摩区域伦理委员会批准了调查的设计。

材料

  1. 招募相对健康的65-80岁的男性和女性,BMI值在20和30 kg·m -2之间 。将其随机分为两组。确保两个人的身体活动水平相对较低( 日常身体活动中等,没有定期的运动训练)。
  2. 排除β受体阻滞剂使用者和冠状动脉疾病患者以及严重的神经系统或联合问题。
  3. 在通知他们在测试和培训课程中可能出现的不适和风险后,向受试者提出书面同意。
  4. 平衡阻力训练(RET)和无训练(CON)组的年龄,性别和体重指数。请一个小组在训练员身上执行RET,每周3次,持续8周;另一组将作为争议ls(CON)。

2.测试和培训

注意:八个练习是标准强度训练:坐腿按压,坐腹部紧缩,仰卧位按压,坐后伸,坐肩按摩,坐式划船,坐腿伸展(膝伸展)和俯卧撑卷曲(膝屈) ;见"代表结果"部分的图8

  1. 在第一次训练期间,对每次训练进行最大重复(1 RM)的最大强度评估。
    注意:1 RM型号通常被使用,被定义为被摄物体只能提起一次而不是两次施加电阻的负载。
    1. 在开始之前,要求参与者进行短时间的预热(初始试验的重量很小)。随后增加负荷,直到可能的1 RM值低于最低值(最多3-4次)广告)。注册受试者只能执行一次(= 1 RM)的最大负载。
    2. 在8次标准强度训练中测量1 RM(见"代表性成绩"部分的图8 )。要求受试者在每次测试运动之间休息至少2-3分钟。
      注意:所有训练练习都使用力量训练器材,包括每次训练的测试。
  2. 要求整个RET组每周进行1次监督力量训练8周。要求参加者在预热后进行上述八项标准训练。他们应该在每组中重复练习12次,并进行三组每项练习。每次运动之间休息1分钟,每次运动2-3分钟。
    1. 要求受试者在同心期( 肌肉缩短期)尽可能快地进行每项运动,并在此期间慢慢进行偏心相( 肌肉伸展期)。
      注意:受试者可以按任何顺序进行练习。但是,要求他们开始和结束一个腿部锻炼,并试图按照提出的顺序执行八个练习。使用强度训练设备进行所有八项练习。
    2. 在每次训练期间,请求参加者进行三组,每组练习的RM的75-80%。在参加者可以在所有三组练习中进行12次重复之后,会话增加约5%的负荷。

次最大循环试验

注意:在测试第1天执行次最大循环测试(参见引言和图1 )。

  1. 执行循环测力计测试,包括两个次最大水平,每次测试4分钟14,15分钟。将第一工作率设置为低(30 W),第二工作在60-120 W,循环测力计上的负载之间不要停顿。
    注意:所有受试者的第一次负荷相同,但第二次和最后一次次最大值应为每个受试者的最大心率的约65-85%。在训练8周的干预期之前和之后,两者的负荷应相同。
    1. 通过询问人员的身体活动以及使受试者最初在短时间内循环,为测试前完成的熟悉测试提供第二高的负载水平。测试领​​导者将根据受试者的心率形成关于什么最终次最大负荷适当的意见。
    2. 在最后一分钟内,在低和高工作率下,使用心率监测仪通过胸带记录平均心率(HR),通过在3:15,3:30,3:45观察HR的平均值,每个工作时间4:00分钟。
    3. 使用全能测量装置来确定气体(O 2和CO 2)的组成 )在过期和启发的空气中。注册呼吸交换比(RER, CO 2 / O 2 ),并在两个工作负荷下量化最后一分钟(每15秒四次测量)的RER平均值。

4.膝盖伸展强度:静态,偏心和同心峰值扭矩和力发展速率

注意:在测试第1天执行膝盖强度测量(参见引言和图1 )。

  1. 录音之前,要求受试者在次最大水平的循环测功机上循环运动8-10分钟(即最大心率的约65-85%)进行预热。
  2. 问问题坐在等动力测力计的长凳上。用肩带和臀部的肩带固定主体的躯干。将主体的柄牢牢地绑在测功机轴上,带有两根皮带:一根在膝下,另一只在上面脚踝。将膝关节轴线与测力轴的旋转中心对齐。
  3. 当受试者被固定时,将最大自愿膝盖强度评估为峰值扭矩,主体坐在等动力测力计中。最初允许受试者进行多次试验以熟悉膝盖力量设备(等动力测力计)。
  4. 请求个人执行四个最大自愿偏心和同心膝盖延伸(交替),右腿以恒定的角速度30度/秒。将运动范围设置在90°至15°之间(直脚= 0°)。
    1. 在偏心任务中,要求受试者通过从15°到90°膝盖角度的整个运动以最大的努力抵抗测力轴。在同心任务中,要求受试者在整个运动范围内尽可能地努力地按压膝盖伸展的测功机轴中的小腿。
  5. 动态录制后可休息4分钟。此后,以65°膝盖角度评估静态最大自愿收缩扭矩(MVC)四次。在每个静态试验中,请问坐在同一台测功机上的受试者,尽可能地快速而坚硬地抵抗现在被固定(65°)并且不能移动的测力轴。
  6. 对于扭矩(强度)信号,使用连接到等动力测力计的模数转换器将模拟转矩信号转换为数字。
    注意:转换器自动将来自测功机的模拟信号更改为数字信号,然后将其自动导出到收集数据的计算机。
    1. 在计算机的软件分析程序中将采样频率设置为5 kHz。使用软件分析程序将数字信号存储在计算机上进行后续的强度值分析。
  7. 在随后的分析中,使用在偏心,同心和静态测量中每个受试者的四次试验获得的最高值。在软件程序中,单击四个测试的最高值,并记下计算机屏幕上显示的强度值。
    1. 在四个静态试验中,记录偏心轮和每个受试者的同心圆记录中的最高峰值扭矩和最高强度值。
      注意:坐姿的膝关节伸肌强度的等动力测力计测试具有适当的可靠性和有效性16,17
  8. 在0-30 ms和0-200 ms之间测量在静态试验中发现的最高值中的力(扭矩)发展速率(RFD)。设置为7.5-Nm水平的零值用于膝关节伸肌强度的收缩开始(时间:0 ms) 18,19 。移动光标(在软件程序中为肌肉强度分析)到y尺度的"7.5Nm"值以获得0ms的位置。
    1. 对于预测试评估,将光标设置为30 ms值(0 ms后)。将以Nm为单位的值显示为30 ms( 即, Nm从7.5 Nm = 0 ms增加)。对测试后值进行相同的过程。
    2. 计算在0-30 ms期间与测试前的Nm值(分母)相比,测试后的Nm值(分子)的百分比增加。因此,将RFD提高从预测试到测试后的百分比。对0-200 ms的时间间隔进行相同的分析。

肌肉活检

注意:在测试第2天进行肌肉活检(见导言和图1 )。

  1. 从大腿肌肉大腿肌中部进行肌肉活检,使用耻骨20
    1. 在活组织检查前,将1-2毫升局部麻醉皮下注射入筋膜。几分钟后,通过皮肤和筋膜切开小手术刀,距离髌骨至髂前上脊的距离约1/3。使用黄芪提取约100-150毫克肌肉组织。
  2. 冷冻样品用于在异戊烷中的组织化学,在液氮中冷却至其凝固点并将其储存在-80℃。储存30-50毫克肌肉组织的样品。
  3. 在液氮中快速冷冻样品进行蛋白质分析,并将其储存在-80°C。储存30-50毫克肌肉组织的样品。

6. OGTT

注意:在第3天进行OGTT(口服葡萄糖耐量试验)(见引言和图1 )。运动和OGTT之间的时间必须超过48小时,前后相似-tests。 2小时口服OGTT用于研究在此期间频繁的血液样本是否显示正常或增加的水平,表明糖尿病或糖尿病前期状况。

  1. 在早上禁食过夜,并且在测试当天或前一天没有进行剧烈运动的OGTT测试。
  2. 在摄入葡萄糖前15分钟,然后在摄入葡萄糖后15,30,60,90和120分钟,通过静脉插管在肛周静脉取血样(4 mL)在250g / L溶液中75g葡萄糖)。
  3. 将血液样品以1,500 xg和4°C离心10分钟,并将等离子体储存在-20°C以备将来分析。使用样品进行标准葡萄糖水平测试(步骤7)。
  4. 对于葡萄糖,胰岛素和c肽,通过确定葡萄糖在基础葡萄糖水平以上的时间积分来计算曲线下面积(AUC)。使用OGTT结果使用松田方法21计算胰岛素敏感性,按照以下方程:10 000 *√[(葡萄糖基础 *胰岛素基础 )*(葡萄糖平均值 *胰岛素平均值 )。

血样分析

  1. 用自动分析仪定量静脉血浆中的葡萄糖浓度。在2小时OGTT 22后,将葡萄糖耐量水平设定为> 7.8 mmol / L的血糖值。
  2. 使用ELISA试剂盒22进行胰岛素和c肽的血浆分析。使用读卡器。将胰岛素和c-肽的ELISA板放在平板阅读器中(每个在单独的场合)。
    注意:读数器通过在某些吸光度下测量板上的样品来测量胰岛素的量和c-肽的量。血脂TG,HDL,载脂蛋白A1和载脂蛋白B用标准方法进行分析瑞典斯德哥尔摩卡罗林斯卡大学医院。

8.肌肉样本分析

  1. 免疫印迹
    1. 首先,在压力低于10 -1 mbar的冻干机中将肌肉样品冷冻干燥12小时。解剖,使其在光学显微镜下使用针和镊子免于血液和结缔组织。储存于-80°C。
      注意:合适量的肌肉在1至5毫克干重之间,但该方案可以调整到小于1毫克,一直到单纤维。由于在一次活检中存在少量肌肉组织,该RET参与者的值不用于免疫印迹。
    2. 使肌肉样本均匀化 用2mM 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES),1mM乙二胺四乙酸(EDTA),5mM乙二醇 - 双(β-氨基乙基醚)-N,N,N',N'-四乙酸(EGTA),10mM MgCl 2,50mMß-甘油磷酸盐,1%TritonX-100,1mM Na 3 VO 4,2mM二硫苏糖醇,20μg/ mL亮抑酶肽,50μg/ mL抑肽酶,1%磷酸酶抑制剂鸡尾酒和40μg/μLPMSF(苯基甲基磺酰氟)。
      1. 在每个管中放置一个0.5毫米氧化锆珠的勺子与肌肉。加入缓冲液并在速度步骤7-8(这里最大为10)和4℃下匀化2×1分钟。
    3. 以10,000xg离心匀浆10分钟。将剩余的上清液转移到新管中,并丢弃含有结构蛋白的沉淀。
    4. 用市售的试剂盒分光光度法测定上清液中的蛋白质浓度,使用平板读数器在660nm 23
      1. 随后用2x Laemmli样品缓冲液和匀浆缓冲液(1:1)将样品稀释至最终蛋白质浓度为1.5μg/#181; l。将其加热至95°C 5分钟以使蛋白质变性。分析前将稀释样品储存在-20°C。
    5. 对于天然 - 聚丙烯酰胺凝胶电泳(PAGE),将30μg蛋白质从每个样品加载到18孔预制梯度凝胶(4-20%丙烯酰胺)中,并在300V下在冰上进行电泳30分钟。
    6. 在4℃下将转移缓冲液(25mM Tris碱,192mM甘氨酸和10%甲醇)中的凝胶平衡30分钟。将蛋白质转移到0.2微米孔径的聚偏二氟乙烯膜,恒定电流为300 mA,4℃下3小时。
    7. 为了确认相等的负载和转移,用总蛋白染色24染色膜。对于每种靶蛋白,将来自每个受试者的所有样品加载到相同的凝胶上并同时运行所有凝胶。
    8. 在室温下将膜封闭1小时,在Tris缓冲盐水(20mM Tris-碱,192mM NaCl; TBS; pH7.6)中,其含有5%无脂牛奶。
    9. 使用在2.5%非脂肪乳中补充有0.1%Tween-20(TBS-TM)的TBS中稀释的一抗(参见材料清单)将膜过夜孵育。
    10. 在一级抗体孵育后,用TBS-TM洗涤膜(2×1分钟加3×5分钟),并与室温下与辣根过氧化物酶缀合的第二抗体(参见材料清单)孵育1小时。用TBS-TM(2×1分钟和3×10分钟)再次洗涤,再次用TBS洗涤4次另外5分钟。
    11. 将6-12mL的化学发光底物涂在膜上5分钟。将膜放在两个透明塑料片之间。将膜放在CCD相机前面,阻挡外部光线。使用化学发光相机滤镜进行连续曝光。
      1. 使用软件程序获取10次曝光2分钟,或直到信号饱和。使用标准设置,两者都用于光学滤波器设置to获得化学发光,以及镜头设置。
    12. 使用不会导致饱和度的最高曝光并标记乐队的轮廓。使用相同的软件将频带量化为强度x mm 2 。从带强度中减去背景噪声。提供相对于总蛋白质染色的结果,并将其表示为与基线相比的百分比变化。
  2. 组织化学
    注意:下面的组织化学技术是基于早期出版物25中描述的方法。
    1. 对于组织化学,使用低温恒温器在-20°C切割连续横截面(10μm)。将横截面安装在储存在玻璃比色皿中的玻璃片上,并在室温下空气干燥活检切片。
    2. 为每个pH值准备缓冲溶液,用于在pH 4.3,4.6和10.3下进行ATP酶染色26 。为了可视化毛细血管,sta在使用淀粉酶-PAS方法27的横截面中。
    3. 通过将校准溶液倒入标记的校准烧杯中来校准pH计。按相应的按钮从主菜单中选择pH。
      1. 用去离子水冲洗探头,并将探头放在第一个校准烧杯中。确保膜中没有气泡。测量第一个校准溶液,然后显示下一个校准溶液(显示屏将询问下一个解决方案)。
      2. 用去离子水冲洗探针,然后将其放在第二个校准烧杯中。确保膜中没有气泡。测量第二个校准溶液并进行下一个校准溶液。
      3. 用去离子水冲洗探针并将其放入第三台校准烧杯中。确保膜中没有气泡。测量第三个校准溶液。
        注意:校准时好的,显示屏会简要显示"3 rd Buffer OK",然后返回主菜单。
    4. 如下使用缓冲液进行ATP酶染色。
      1. 为了制备pH为10.3的溶液,使用两种不同的溶液:(A)4.506g甘氨酸,4.8g CaCl 2,3.51g NaCl和600mL dH 2 O和(B)2.176g NaOH和540mL的dH 2 O.将溶液储存在冷藏室或冰箱中。在一个月内使用它们。
      2. 为了在pH 4.3和4.6中制备溶液,进行"酸预温育"。使用以下方法制备酸预加热:使用6.47g乙酸钠,3.7g KCl和500mL dH 2 O.然后,通过将2.5g溶解在250mL dH 2 O中制备1%CaCl 2溶液。制备2将其溶解在250mL的dH 2 O中5%的CoCl 2溶液。
      3. 存储并使用上述解决方案。最后,制备0.2%硫化铵将800μL的20%(NH 42 S混合到40mL的dH 2 O中。
    5. 如下制备某些pH值的溶液。校准pH计后,从冰箱中取出比色皿和氯化钙和氯化钴,使其在染色前温热至室温。
      1. 对于pH 10.3 ,将约25mL的溶液A加入到小(约70mL)的玻璃烧杯中。测量pH值。继续加入溶液B直到达到10.37的所需pH。如果染色太暗,请增加pH。如果太亮,请降低pH值。
      2. 对于pH 4.6 ,向小玻璃烧杯中加入约25mL的"酸预温育"。测量pH值。使用5 M乙酸降低pH值如果污渍的图像太暗,请尝试用增加的pH值来减轻。如果它太亮,变暗,pH降低。如果染色无效,请尝试其他pH值:4.8份有4.6的。
      3. 对于pH 4.3 ,与4.6相同,但加入更多的乙酸。如果污渍太亮,则降低pH值,如果太暗,则会增加pH值,以便指定纤维。
      4. 准备ATP溶液如下。称重0.017g的ATP比色皿(10mL),因此每3个比色杯0.051g或4个比色皿0.068g。取30 mL(3杯比色杯,10 mL /比色皿)溶液,pH为10.3(使用圆柱刻度玻璃),并放入带有称重ATP的玻璃烧杯中。
        1. 彻底混合并测量pH值。使用浓缩的HCl降低pH,直到pH达到9.40。
      5. 为了在各种pH值下孵育,请执行以下操作。将10.3溶液放入一个试管中,并在37℃的水浴中孵育9分钟。将4.3溶液置于另一个比色皿中,并在室温下孵育5分钟。将4.6溶液置于最后的比色皿中,并在室温下孵育1分钟。
      6. 遵循优选的pH孵育程序,应用每个比色皿的内容如下。用dH 2 O洗涤15次。向活检样品中加入ATP溶液(0.170g ATP / 100mL H 2 O)。在37℃的水浴中孵育30分钟。用dH 2 O洗15次
      7. 将CaCl 2溶液(1g CaCl 2 / 100mL H 2 O)加入到比色皿中的活检样品中。在室温下孵育3分钟。用dH 2 O洗涤15次。将CoCl 2溶液(2g CoCl 2 / 100mL H 2 O)加入到比色皿中的活检样品。在室温下孵育3分钟。用dH 2 O洗15次
      8. 将其放入(NH 42 S溶液中30秒,并在通风橱下快速洗涤15次。将活检切片粘贴在载玻片上。为了避免气泡,挤压活检,但不要太难。
    6. 选择横截面的一个区域,而不会有纤维的伪像或纵向切割。分析下ght显微镜使用软件。
    7. 通过计算机图像分析评估纤维类型的横截面积(CSA),毛细血管和纤维类型( I型,IIA型或IIX型)的分类,每次活检至少150-200个纤维。根据横截面肌肉纤维的显微镜照片,确保三种类型的肌纤维( I型,IIA型和IIX型)具有各种色调的白色至灰色至黑色,这取决于pH染色( 即, 4.34,4.65和10.37)。
    8. 首先标注一些I型纤维。此后,程序将自动注册其他I型光纤。检查所有I型纤维是否正确标记。要标记某个纤维,请单击"矢量"按钮。使用光标测量每个单独选择的肌肉纤维的面积。
    9. 对I型纤维进行分析后,对IIA型和IIX型继续进行相同的程序。每种类型的肌纤维的平均±SEM( I型,IIA和IIX)应计算RET和CON组的纤维量和CSA量。
      注意:每次活检的平均值为163±9个纤维,评估横截面积(CSA),毛细血管和纤维类型( I型,IIA和IIx)的分类。

结果

材料

在研究中,21岁相对健康的男性,65-80岁,体重指数在20〜30 kg·m2之间,随机分为两组。两组人员身体活动水平相对较低( 日常身体活动水平较低,无规律运动训练)。一组(n = 12,6名女性和6名男性)在训练员身上执行RET,每周三次,共8周,另一组作为对照组(n = 10,5名女性和5名男性)。 RET和CON组在年龄,性别和体...

讨论

在这项研究中,已经使用了一些技术来研究短期进行性耐力训练对老年受试者的肌肉功能/形态,有氧能力和葡萄糖耐量的影响。主要发现是,与对照组相比,肌肉有氧能力,葡萄糖耐量,强度,功率和肌肉质量( 涉及细胞信号和肌纤维组成的蛋白质)都有许多改善。例如:静态,偏心和同心最大膝关节伸展强度(8-12%);训练负荷(19-72%),最初的力发展速度(RFD)在0-30毫秒(52%);?...

披露声明

作者宣称他们没有竞争的经济利益。

致谢

作者感谢AndréeNienkerk,Dennis Peyron和SebastianSkjöld监督培训课程和几项测试;参加课题;给Tim Crosfield进行语言修订;以及瑞典体育与健康科学学院的经济支持。

材料

NameCompanyCatalog NumberComments
Western blot
Pierce 660 nm Protein Assay KitThermo Scientific, Rockford, IL, USA22662
SuperSignal West Femto Maximum Sensitivity Substrate Thermo Scientific34096
Halt Protease Inhibitor Cocktail (100x)Thermo Scientific78429
Restore PLUS Western Blot Stripping BufferThermo Scientific46430
Pierce Reversible Protein Stain Kit for PVDF MembranesThermo Scientific24585
10 st - 4–20% Criterion TGX Gel, 18 well, 30 µLBio-Rad Laboratories, Richmond, CA, USA567-1094
Immun-Blot PVDF Membrane Bio-Rad162-0177
Precision Plus Protein Dual Color Standards Bio-Rad161-0374
2x Laemmli Sample BufferBio-Rad161-0737
10x Tris/GlycineBio-Rad161-0771
2-MercaptoethanolBio-Rad161-0710
Tween 20Bio-RadP1379-250ML
Band analysis with Quantity One version 4.6.3.softwareBio-Rad
1% phosphatase inhibitor coctailSigma-Aldrich, Saint Louis, Missouri, USA
Antibodies
mTOR (1:1,000)Cell Signaling, Danvers, Massachusetts, USA2983
Akt (1:1,000)Cell Signaling, Danvers9272
Secondary anti-rabbit and anti-mouse HRP-linked (1:10,000)Cell Signaling, Danvers
Citrate synthase (CS) (1:1,000)Gene tex, San Antonio, California, USA
OXPHOS (1:1,000)Abcam, Cambridge, UK
Equipment - Analysis of muscle samples
Bullet Blender 1.5 for homogenizingNext Advance, New York, USA
Plate readerTecan infinite F200 pro, Männedorf, Switzerland
Histochemistry
Mayer hematoxylinHistoLab, Västra Frölunda, Sweden 1820
Oil Red oSigma-Aldrich, Saint Louis, Missouri, USA00625-25y
NaClSigma-Aldrich793566-2.5 kg
Cobalt ChlorideSigma-Aldrich60818-50G
AmylaseSigma-AldrichA6255-25MG
ATPSigma-AldrichA2383-5G
GlycineVWR-chemicals / VWR-international, Spånga, Sweden101196X
Calcium ChlorideVWR-chemicals / VWR-international22328.262
Iso-pentaneVWR-chemicals / VWR-international24872.298
Etanol 96%VWR-chemicals / VWR-international20905.296
NaOHMERCK, Stockholm, Sweden1.06498.1000
Na acetateMERCK1.06268.1000
KClMERCK1.04936.1000
Ammonium SulphideMERCKU1507042828
Acetic acid 100%MERCK1.00063.2511
Schiffs´ ReagentMERCK1.09033.0500
Periodic acidMERCK1.00524.0025
ChloroformMERCK1.02445.1000
pH-meter LANGEHACH LANGE GMBH, Dusseldorf, Germany
Light microscopeOlympus BH-2, Olympus, Tokyo, Japan
Cryostat  Leica CM1950Leica Microsystems, Wetzlar, Germany
Leica software Leica Qwin V3Leica Microsystems
Gel Doc 2000 - Bio-Rad, camera setupBio-Rad Laboratories AB, Solna, Sweden 
Software program Quantift One - 4.6 (version 4.6.3; Bio Rad)Bio-Rad Laboratories AB, Solna, Sweden 
Oral glucos tolerance test, OGTT
Glukos APL 75 gAPL, Stockholm, Sweden323,188
Automated analyser Biosen 5140EKF Diagnostics, Barleben, Germany
Insulin and C-peptide in plasma kit ELISAMercodia AB, Uppsala Sweden10-1132-01, 10-1134-01
Plate readerTecan infinite F200 pro, Männedorf, Switzerland
Further equipment
Measures of fat-free massFFM-Tanita T5896, Tanita, Tokyo, Japan
Strength training equipment for all training exercisesCybex International Inc., Medway, Massachusetts, USA 
Cycle ergometer Monark Ergometer 893E, Monark Exercises, Varberg, Sweden 
Heart rate monitor RS800, PolarPolar Electro OY, Kampele, Finland
Oxycin-Pro - automatic ergo-spirometric deviceErich Jaeger GmbH, Hoechberg, Germany
Isokinetic dynamometer, Isomed 2000, knee muscle strengthD&R Ferstl GmbH, Henau, Germany
CED 1401 data acquisition system and Signal softwareCambridge Electronic Design, Cambridge, UK
Software for muscle strength analysis, Spike 2, version 7Signal Hound, LA Center, WA, USA
Statistica software for statistical analysesStatistica, Stat soft. inc, Tulsa, Oklahoma, USA
Muscle biopsy equipment
Weil Blakesley conchotomeWisex, Mölndal, Sweden
Local anesthesia Carbocain, 20 mL, 20 mg/mL; Astra Zeneca, Södertälje, Sweden169,367
Surgical BladeFeather Safety Razor CO, LTD, Osaka, Japan 11048030

参考文献

  1. Carrick-Ranson, G., et al. The effect of age-related differences in body size and composition on cardiovascular determinants of VO2max. J. Gerontol. A Biol. Sci. Med. Sci. 68 (5), 608-616 (2013).
  2. Peterson, C. M., Johannsen, D. L., Ravussin, E. Skeletal muscle mitochondria and aging: a review. J. Aging. 2012, 194821 (2012).
  3. Russell, A. P., Foletta, V. C., Snow, R. J., Wadley, G. D. Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim. Biophys. Acta. 1840 (4), 1276-1284 (2014).
  4. Conley, K. E., Jubrias, S. A., Esselman, P. C. Oxidative capacity and ageing in human muscle. J. Physiol. 526 (Pt 1), 203-210 (2000).
  5. Holloszy, J. O. Adaptation of skeletal muscle to endurance exercise. Med. Sci. Sports. 7 (3), 155-164 (1975).
  6. Menshikova, E. V., Ritov, V. B., Fairfull, L., Ferrell, R. E., Kelley, D. E., Goodpaster, B. H. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 61 (6), 534-540 (2006).
  7. Balakrishnan, V. S., et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5 (6), 996-1002 (2010).
  8. Ferrara, C. M., Goldberg, A. P., Ortmeyer, H. K., Ryan, A. S. Effects of aerobic and resistive exercise training on glucose disposal and skeletal muscle metabolism in older men. J. Gerontol. A Biol. Sci. Med. Sci. 61 (5), 480-487 (2006).
  9. Frontera, W. R., Meredith, C. N., O'Reilly, K. P., Evans, W. J. Strength training and determinants of VO2max in older men. J. Appl. Physiol. (1985). 68 (1), 329-333 (1990).
  10. Toth, M. J., Miller, M. S., Ward, K. A., Ades, P. A. Skeletal muscle mitochondrial density, gene expression, and enzyme activities in human heart failure: minimal effects of the disease and resistance training. J. Appl. Physiol. (1985). 112 (11), 1864-1874 (2012).
  11. Zachwieja, J. J., Toffolo, G., Cobelli, C., Bier, D. M., Yarasheski, K. E. Resistance exercise and growth hormone administration in older men: effects on insulin sensitivity and secretion during a stable-label intravenous glucose tolerance test. Metabolism. 45 (2), 254-260 (1996).
  12. Davidson, L. E., et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch. Intern. Med. 169 (2), 122-131 (2009).
  13. DeFronzo, R. A., Tobin, J. D., Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237 (3), E214-E223 (1979).
  14. Åstrand, P. O., Ryhming, I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J. Appl. Physiol. 7 (2), 218-221 (1954).
  15. Björkman, F., Ekblom-Bak, E., Ekblom, &. #. 2. 1. 4. ;., Ekblom, B. Validity of the revised Ekblom Bak cycle ergometer test in adults. Eur. J. Appl. Physiol. 116 (9), 1627-1638 (2016).
  16. Seger, J. H., Westing, S. H., Hanson, M., Karlson, E., Ekblom, B. A new dynamometer measuring eccentric and eccentric muscle strength in accelerated, decelerated and isokinetic movements: validity and reproducibility. Eur. J. Appl. Physiol. 57 (5), 526-530 (1988).
  17. Westing, S. H., Seger, J. Y., Karlson, E., Ekblom, B. Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur. J. Appl. Physiol. 58 (1-2), 100-104 (1988).
  18. Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 93 (4), 1318-1326 (2002).
  19. Andersen, L. L., Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 96 (1), 46-52 (2006).
  20. Henriksson, K. G. "Semi-open" muscle biopsy technique. A simple outpatient procedure. Acta Neurol. Scand. 59 (6), 317-323 (1979).
  21. Matsuda, M., DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 22 (9), 1462-1470 (1999).
  22. American Diabetes, Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 28, S37-S42 (2005).
  23. Moberg, M., Apró, W., Ekblom, B., van Hall, G., Holmberg, H. C., Blomstrand, E. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. Am. J. Physiol. Cell Physiol. 310 (11), C874-C884 (2016).
  24. Antharavally, B. S., Carter, B., Bell, P. A., Krishna Mallia, ., A, A high-affinity reversible protein stain for Western blots. Anal. Biochem. 329 (2), 276-280 (2004).
  25. Brooke, M. H., Kaiser KK, . Muscle fiber types: how many and what kind?. Arch. Neurol. 23 (4), 369-379 (1970).
  26. Brooke, M. H., Kaiser, K. K. Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence. J. Histochem. Cytochem. 18 (9), 670-672 (1970).
  27. Andersen, P. Capillary density in skeletal muscle of man. Acta Physiol. Scand. 95 (2), 203-205 (1975).
  28. Frank, P., Andersson, E., Pontén, M., Ekblom, B., Ekblom, M., Sahlin, K. Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scand. J. Med. Sci. Sports. 26 (7), 764-773 (2016).
  29. Blomstrand, E., Celsing, F., Fridén, J., Ekblom, B. How to calculate human muscle fibre areas in biopsy samples--methodological considerations. Acta Physiol. Scand. 122 (4), 545-551 (1984).
  30. Cuthbertson, D., et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 19 (3), 422-424 (2005).
  31. Vincent, K. R., Braith, R. W., Feldman, R. A., Kallas, H. E., Lowenthal, D. T. Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women. Arch. Intern. Med. 162 (6), 673-678 (2002).
  32. Cadore, E. L., et al. Effects of strength, endurance, and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J. Strength Cond. Res. 25 (3), 758-766 (2011).
  33. Jubrias, S. A., Esselman, P. C., Price, L. B., Cress, M. E., Conley, K. E. Large energetic adaptations of elderly muscle to resistance and endurance training. J. Appl. Physiol. (1985). 90 (5), 1663-1670 (1985).
  34. Benton, C. R., Wright, D. C., Bonen, A. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl. Physiol. Nutr. Metab. 33 (5), 843-862 (2008).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

125 mTOR

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。