JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

我们描述了一个在完整的胰岛使用 pHluorin, pH 敏感的绿色荧光蛋白可视化的胞的协议。孤立的胰岛感染腺病毒编码 pHluorin 耦合到囊泡货物神经肽 Y。这使得检测胰岛素颗粒融合事件的共聚焦显微镜。

摘要

胰岛素分泌在正常的生理条件下和疾病中起着核心作用。目前研究胰岛素颗粒胞的方法是使用电生理学或显微镜结合荧光记者的表达。然而, 大多数这些技术已被优化的克隆细胞系或需要游离胰岛。相比之下, 这里提出的方法可以实时显示胰岛素颗粒胞在完整的胰岛。在本议定书中, 我们首先描述的病毒感染的孤立胰岛与腺病毒, 编码 pH 敏感的绿色荧光蛋白 (GFP), pHluorin, 耦合到神经肽 Y (NPY)。其次, 我们描述了病毒感染后五天胰岛的共聚焦成像, 以及如何监测胰岛素颗粒的分泌。简要地, 被感染的小岛被放置在一个片在一个成像室和图像下的直立激光扫描共聚焦显微镜, 而不断灌注的胞外溶液含有各种刺激。共聚焦图像跨越50µm 的胰岛是获得作为延时录音使用的快速共振扫描仪。胰岛素颗粒与等离子体膜的融合可以随着时间的推移而随之而来。这个过程也允许测试一个电池的刺激在一个单一的实验, 是兼容的鼠标和人类的胰岛, 并可以结合各种染料的功能成像 (, 膜电位或胞浆钙染料)。

引言

胰岛素是由胰岛的β细胞产生的, 它是葡萄糖代谢的关键调节器1。死亡或功能障碍的β细胞扰乱葡萄糖稳态和导致糖尿病2。胰岛素是包装在密集核心颗粒, 释放在一个 Ca2相关的方式3。阐明胰岛素颗粒胞是如何调节的, 是充分了解什么决定胰岛素分泌和开辟新的途径, 以确定治疗糖尿病的新型治疗靶点的关键。

胰岛素胞已被广泛研究使用电生理学方法, 如膜电容测量, 和显微方法结合荧光分子。膜电容测量具有良好的时间分辨率和允许单细胞记录。然而, 电容的变化反映了细胞的净表面变化, 不捕获单个融合事件或区分胰岛素颗粒融合与其他胰岛素分泌泡3。显微方法, 如双光子或全内反射荧光 (TIRF) 显微镜结合荧光探针和囊泡货物蛋白, 提供了额外的细节。这些技术捕获单个 exocytotic 事件以及前 post-exocytotic 阶段, 并可用于研究3单元人口中的 exocytotic 模式。

荧光记者可分为三种类型: 1) 胞外, 2) 细胞质, 或 3) 水泡。1) 细胞外的记者是极地示踪剂 (, 糖, 磺 B (局), 路西法黄, pyranine), 可以通过细胞外环境介绍4。使用极性示踪剂可以对细胞中的融合孔进行调查, 并捕获各种胞间结构, 如血管。然而, 他们不报告囊泡货物行为。2) 细胞质记者是荧光探针耦合到膜相关蛋白, 面对细胞质和参与对接和胞。例子包括可溶性的N-ethylmaleimide 敏感因子附着蛋白受体 (网罗) 家族, 已成功地用于研究神经递质释放5神经科学。这种蛋白质有多个结合的伙伴, 而不是胰岛素颗粒的具体。3) 水泡记者是荧光探针融合到水泡货物蛋白质, 允许调查货物特定的泡状行为。胰岛素颗粒特定的货物蛋白包括胰岛素, c 肽, 胰岛淀粉样多肽, 和 NPY 等6,7。NPY 只是存在于胰岛素含有颗粒, 并与胰岛素 co-released, 使它成为一个优秀的合作伙伴的荧光记者8

以前使用不同的荧光蛋白与 NPY 的融合来研究神经内分泌细胞中胞的各个方面, 如特定的结合异构体的要求9,10以及时效的释放取决于肌动蛋白骨架和肌球蛋白 II11,12。在这项研究中, 我们选择了 pHluorin 作为荧光记者, 这是一个修饰 GFP, 是荧光在酸性 ph 内致密核心颗粒, 但成为明亮的荧光后, 暴露于中性细胞外 ph 值13。成熟的胰岛素颗粒的酸性 pH 值低于5.5。一旦颗粒与等离子体膜融合并打开, 其货物就暴露在中性胞外 ph 值为 7.4, 允许使用 ph 敏感蛋白 pHluorin 作为记者7,14

鉴于 pHluorin 的 pH 敏感性和胰岛素颗粒中 npy 的选择性表达, npy-pHluorin 融合结构可用于研究胰岛素颗粒胞的各种性质。病毒传递的融合结构确保高转染效率和工作在初级β细胞或细胞系, 以及在孤立的小岛。这种方法也可以作为研究胞在任何其他细胞类型与 NPY 包含囊泡的指导。它也可以与任何转基因小鼠模型结合, 研究某些条件 (knockdowns, 过度表达,) 对胞的影响。这项技术以前被用来描述的空间和时间模式的胰岛素颗粒分泌的β细胞在人胰岛的人口15

Access restricted. Please log in or start a trial to view this content.

研究方案

迈阿密大学动物伦理委员会批准了所有的实验.

1. 完整的孤立人或小鼠胰岛的病毒感染

  1. 胰岛文化: 准备胰岛培养基: 干诺医学研究实验室 (CMRL) 1066、10% (v/v) FBS 和2毫米 l-谷氨酰胺。
    1. 人类胰岛是从综合胰岛分布计划 (NIDDK, NIH) 获得的。抵达后, 转移胰岛 (约500小岛), 以35毫米 non-tissue 培养皿2毫升 CMRL 培养基37和 #176; C, 5%/95% CO 2 /O 2 , 在病毒感染前24小时.
    2. 鼠标胰岛可根据以前建立的协议进行隔离 16 。继隔离, 文化〜200胰岛等效35毫米 non-tissue 培养皿2毫升 CMRL 培养基在37和 #176; C, 5%/95% CO 2 /O 2 在病毒感染前24小时.
      注意: 避免使用 GFP 或 YFP 在胰岛上表达的转基因小鼠, 以避免与 NPY-pHluorin 的荧光重叠.
  2. 病毒准备
    注意: NPY-pHluorin 融合被克隆到 pcDNA3 载体 10 和亚为腺病毒生产的腺病毒载体 [腺病毒血清型 5 (DE1/E3)] 由重组腺病毒制造公司。该病毒是 aliquoted 和存储在-80 和 #176; C。该病毒的股票是由公司提供的滴 10 12 到 10 13 病毒粒子 (〜 3 x 10 10 -3 x 10 11 PFU)。
    1. 对于 体外 胰岛感染, 使用 10 6 PFU/mL, 导致大约2的感染 (莫伊) 的近似多样性 (请参阅 讨论 了解详细信息)
  3. 胰岛病毒感染
    警告: 与腺一起工作需要生物安全等级 2 (BSL2) 程序和认证。与机构生物安全干事核对有关 BSL2 程序的指导和培训。 如上所述,
    1. 准备人/鼠标小岛.
    2. 在2毫升的 CMRL 培养基中添加 5-10 和 #181; 每35毫米的培养皿中含有人/小鼠胰岛 (10% FBS 和2毫米 l-谷氨酰胺).
      注: 根据公司数据表提供的病毒效价调整所使用的计算机病毒的音量.
    3. 在37和 #176 的病毒介质中培养胰岛; C/5%co 2 24 h.
    4. 24 小时后, 吸入含有病毒的培养基, 用2毫升 CMRL 培养基取代 (10% FBS 和2毫米 l-谷氨酰胺).
    5. 在37和 #176 中培养小岛 4-6 天; C/5%co 2 , 每3天替换一次媒体.
    6. 经过 4-6 天的培养, 预计约30% 的胰岛细胞被感染。然后, 胰岛可用于活体成像实验.

2。感染胰岛的共聚焦成像

注意: 请参阅用于共焦成像所需材料和设备的 材料表

  1. 试剂制备和实验设置
    1. 准备胞外溶液: 加125毫米氯化钠, 5.9 毫米氯化钾, 2.56 毫米 CaCl 2 , 1 毫米氯化镁 2 , 25 毫米 HEPES, 0.1% BSA, pH 7.4, 无菌过滤.
      注: 此缓冲器通常是在无葡萄糖的情况下准备的, 可存储在4和 #176; C 为1月。在实验当天添加葡萄糖以达到所需的最终浓度。
      1. 准备基础葡萄糖 (3 mM) 培养基: 添加75和 #181; L 2 米葡萄糖库存到50毫升的胞外溶液.
      2. 血糖 (16 mM) 介质: 添加400和 #181; L 2 米葡萄糖库存到50毫升胞外溶液
    2. 在含有3毫米葡萄糖的胞外溶液中稀释任何额外的刺激 (如 例如, 氯化钾或三磷酸腺苷 (ATP))。
    3. 在开始实验前, 预处理片与聚 d-赖氨酸, 加入30和 #181; L 的聚 d-赖氨酸溶液 (1 毫克/毫升) 到片1小时, 并彻底冲洗它与 h 2 O.
      注: 聚赖氨酸涂层片可贮存在室温下长达6月.
    4. 在实验前至少1小时, 使用1毫升吸管, 将胰岛转移到含有 3 mm 葡萄糖的胞外溶液的35毫米培养皿中。保持胰岛在37和 #176; C 和 5% CO 2 .
      注: 如果需要, 可以在这一步中标记等离子膜。对细胞膜进行标记, 添加2和 #181; M di-8-ANEPP 染料到胞外溶液与3毫米葡萄糖。在染料溶液中孵育1小时37和 #176 的小岛; C/5%co 2 。等离子体膜染料可以在 488 nm 激发, 并在 620 nm 检测到.
    5. 在开始实验之前, 用真空硅脂将片连接到成像室。将成像室固定在成像平台上。使用吸管, 安置 20-30 个小岛在聚-d-赖氨酸处理的区域片并且让小岛坚持表面为 20 min.
      注意: 重要的是不要让片完全干燥以避免胰岛损伤.
    6. 当胰岛附着在片上时, 通过用水彻底冲洗来准备灌注系统。将每个解决方案添加到不同的通道: 3 mm 葡萄糖 (通道 1), 16 mm 葡萄糖 (通道 2), 16 毫米葡萄糖与100和 #181; m 3-异丁基 1-嘌呤 (IBMX) 和10和 #181; m 佛司可林 (渠道 3), 25 毫米氯化钾在3毫米葡萄糖 (渠道 4), 10 和 #181; m ATP 在3毫米葡萄糖 (通道 5)。从系统中卸下所有气泡, 方法是分别打开每个通道, 并让溶液流几分钟, 并确保流是一致的 (0.5 毫升/分钟) 和油管没有泄漏.
    7. 将单个内嵌解决方案加热器连接到灌注出水管, 并将流出缓冲器的温度调整到37和 #176; C.
    8. 准备吸入泵。卸下系统中的所有气泡, 并确保流是一致的, 并且油管不会泄漏.
    9. 一旦胰岛附着在片表面, 则用含有3毫米葡萄糖的胞外溶液轻轻填满成像室。避免把小岛从片的表面清洗掉.
    10. 将成像平台与胰岛放置到显微镜阶段, 并将其连接到灌注系统和抽吸泵.
    11. 打开流并不断灌注3G 胞外溶液的胰岛。该系统现已准备好进行共聚焦成像.
  2. 共焦成像
    1. 在显微镜场中以较低的放大率定位小岛。一旦专注于小岛, 切换到更高的放大目标 ( 例如 , 63X 水浸泡目标 (63 x/0.9 NA)).
    2. 使用软件打开购置 ( 材料表 ) 并激活共振扫描仪模式.
    3. 选择 XYZT 成像模式并配置捕获设置, 如下所示:
      1. 打开氩激光器和 488 nm 激光线, 并将激光功率调整为 50% pHluorin 励磁.
      2. 收集 505-555 nm 的排放量
      3. 选择 512 x 512 像素的分辨率。按 #34; 活 #34; 按钮开始成像并调整增益水平 (典型增益约 600 V).
      4. 设置 z 堆栈的开始和结束: 将焦点放在胰岛的顶端, 然后选择和 #34; 开始和 #34; 然后移动到最后一个可以集中的平面, 然后选择和 #34; 结束 #34;。使用5和 #181 的 z 步大小; m。该软件将自动计算共焦平面的数量.
      5. 将每个 z 堆栈的获取时间间隔设置为接近 1.5-2 秒, 然后选择选项和 #34; 获取直到停止和 #34; 连续成像.
      6. 按 #34; 启动和 #34; 按钮到 initialize.
    4. 使用各种刺激协议来诱导颗粒胞, 通过灌注所需的刺激来诱发小岛。刺激协议可以定制, 以符合预期的科学目的 (见下文).
  3. 刺激协议
    注意: 在每一个刺激协议中, 首先记录至少2分钟的胰岛背景活动, 在恒定灌注过程中含有3毫米葡萄糖的胞外溶液。灌注在一段时间内用兴奋剂。兴奋剂的顺序, 刺激的持续时间和录音的持续时间可以定制, 以符合预期的科学目的。在开始新的刺激之前, 一定要用含有3毫米葡萄糖的胞外溶液彻底清洗小岛。下面找到用于演示方法功能的示例激发协议。
    1. 使用氯化铵 (NH 4 Cl) 刺激 pHluorin pH 敏感性和病毒感染效率的阳性对照 ( 图 3 ): 3 mm 葡萄糖 (2 分钟) 和 #8594; 50 mm NH 4 cl (2 分钟) 在 3 mm 葡萄糖#160; #8594; 3 毫米葡萄糖 (2 分钟)
      注意: 在 NH 4 Cl 溶液中, 以摩尔的基础取代氯化钠.
    2. 通过增加葡萄糖浓度 ( 图 5 图 6 ) 刺激胰岛素颗粒胞: 3 毫米葡萄糖 (2 分钟) 和 #160; #8594; 16 mm 葡萄糖 (15-30 分钟) 和 #160; #8594; 3 mm 葡萄糖(2 分钟
      注: 为了看到几个爆发的活动, 灌注的小岛连续与16G 解决方案至少15分钟.
      注意: 为了提高分泌响应 17 的一致性, 用户可以在3G 和16G 的解决方案中添加 IBMX (100 和 #181、10和 #181; m 佛司可林) 的提高阵营的代理。这不会改变颗粒分泌的时间模式。有关详细信息, 请参见 15 讨论

Access restricted. Please log in or start a trial to view this content.

结果

该技术的整个工作流显示在图 1中。简单地, 老鼠或人的小岛可以感染腺病毒编码 NPY pHluorin 和影像, 在几天的文化, 在共聚焦显微镜下。当颗粒与等离子体膜和开放的保险丝, 荧光的增加观察和可以量化 (图 1)。为了确定 NPY-pHluorin 是否确实是一个合适的工具, 以监测胰岛素颗粒动力学, 感染的胰岛 immunostained 与抗体抗 GFP 和不同胰...

Access restricted. Please log in or start a trial to view this content.

讨论

这份手稿描述了一种技术, 可以用来可视化胞胰岛素颗粒的β细胞在完整的胰岛的共聚焦显微镜。它使用 NPY-pHluorin 作为荧光记者克隆成腺病毒, 以确保高转染效率。

虽然该方法在我们手中是高效的, 但它可能需要一些修改, 主要取决于两个参数: 1) 胰岛的质量和 2) 的病毒库存的效价优化感染条件。在胰岛病毒感染之前, 允许胰岛准备在37° c 过夜时从隔离和运输压力中恢复。检?...

Access restricted. Please log in or start a trial to view this content.

披露声明

作者宣布, 他们没有竞争的金融利益。

致谢

作者感谢马西娅 Boulina 从还原铁成像核心设施帮助与显微镜。这项工作得到了 NIH 赠款 1K01DK111757-01 (JA)、F31668418 (MM)、R01 DK111538、R33 ES025673 和 R56 DK084321 (AC) 的支持。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
Upright laser-scanning confocal microscopeLeica Microsystems, Wetzlar, GermanyTCS-SP5includes LAS AF, the image acquisition software
Imaging chamberWarner instrumentsRC-26
Imaging chamber platformWarner instrumentsPH-1
22 x 40 glass coverslipsDaiggerbrandG15972H
Vacuum silicone greaseSigmaZ273554-1EA
Multichannel perfusion systemWarner instrumentsVC-8
Single inline solution heaterWarner instrumentsSH-27B
Temperature controllerWarner instrumentsTC-324C
Peristaltic Suction pumpPharmaciaP-1
35 mm Petri dish, non-tissue culture treatedVWR10861-586
CMRL Medium, no glutamineThermoFisher11530037
FBS, heat inactivatedThermoFisher16140071
L-Glutamine 200 mMThermoFisher25030081
5 M NaCl solutionSigmaS5150
3 M KCl solutionSigma60135
1 M CaCl2 solutionSigma21115
1 M MgCl2 solutionSigmaM1028
Bovine Serum AlbuminSigmaA2153
1 M HEPES solutionSigmaH0887
Vacuum filterVWR431098
D-GlucoseSigmaG8270
Poly-D-lysine hydrobromideSigma-aldrichP6407
Di-8-ANNEPThermoFisherD3167
3-isobutyl-1-methylxanthine (IBMX)SigmaI5879
ForskolinSigmaF3917

参考文献

  1. Roder, P. V., Wong, X., Hong, W., Han, W. Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J. 473 (18), 2737-2756 (2016).
  2. Rutter, G. A., Pullen, T. J., Hodson, D. J., Martinez-Sanchez, A. Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 466 (2), 203-218 (2015).
  3. Rorsman, P., Renstrom, E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 46 (8), 1029-1045 (2003).
  4. Takahashi, N., Kishimoto, T., Nemoto, T., Kadowaki, T., Kasai, H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science. 297 (5585), 1349-1352 (2002).
  5. Ramirez, D. M., Khvotchev, M., Trauterman, B., Kavalali, E. T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron. 73 (1), 121-134 (2012).
  6. Michael, D. J., Xiong, W., Geng, X., Drain, P., Chow, R. H. Human insulin vesicle dynamics during pulsatile secretion. Diabetes. 56 (5), 1277-1288 (2007).
  7. Ohara-Imaizumi, M., et al. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy. Biochem J. 363 (Pt 1), 73-80 (2002).
  8. Whim, M. D. Pancreatic beta cells synthesize neuropeptide Y and can rapidly release peptide co-transmitters. PLoS One. 6 (4), e19478(2011).
  9. Tsuboi, T., Rutter, G. A. Multiple forms of "kiss-and-run" exocytosis revealed by evanescent wave microscopy. Curr Biol. 13 (7), 563-567 (2003).
  10. Zhu, D., et al. Synaptotagmin I and IX function redundantly in controlling fusion pore of large dense core vesicles. Biochem Biophys Res Commun. 361 (4), 922-927 (2007).
  11. Aoki, R., et al. Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. Biochem J. 429 (3), 497-504 (2010).
  12. Felmy, F. Modulation of cargo release from dense core granules by size and actin network. Traffic. 8 (8), 983-997 (2007).
  13. Miesenbock, G., De Angelis, D. A., Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 394 (6689), 192-195 (1998).
  14. Gandasi, N. R., et al. Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis. PLoS One. 10 (6), e0127801(2015).
  15. Almaca, J., et al. Spatial and temporal coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia. 58 (12), 2810-2818 (2015).
  16. Do, O. H., Low, J. T., Thorn, P. Lepr(db) mouse model of type 2 diabetes: pancreatic islet isolation and live-cell 2-photon imaging of intact islets. J Vis Exp. (99), e52632(2015).
  17. Hanna, S. T., et al. Kiss-and-run exocytosis and fusion pores of secretory vesicles in human beta-cells. Pflugers Arch. 457 (6), 1343-1350 (2009).
  18. Carter, J. D., Dula, S. B., Corbin, K. L., Wu, R., Nunemaker, C. S. A practical guide to rodent islet isolation and assessment. Biol Proced Online. 11, 3-31 (2009).
  19. Weber, M., et al. Adenoviral transfection of isolated pancreatic islets: a study of programmed cell death (apoptosis) and islet function. J Surg Res. 69 (1), 23-32 (1997).
  20. Michael, D. J., et al. Fluorescent cargo proteins in pancreatic beta-cells: design determines secretion kinetics at exocytosis. Biophys J. 87 (6), L03-L05 (2004).
  21. Serre-Beinier, V., et al. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet. 18 (3), 428-439 (2009).
  22. Rutter, G. A., Hodson, D. J. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci. 72 (3), 453-467 (2015).
  23. Shen, Y., Rosendale, M., Campbell, R. E., Perrais, D. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J Cell Biol. 207 (3), 419-432 (2014).
  24. Speier, S., et al. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med. 14 (5), 574-578 (2008).
  25. Low, J. T., et al. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. Diabetologia. 57 (8), 1655-1663 (2014).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

127YpHluorin

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。