JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文介绍了一种分离大鼠脑微血管及制备膜样品的方法。该协议具有明显的优势, 生产丰富的微血管样品与可接受的蛋白质产量从个别动物。样品可用于大脑微血管内皮的健壮蛋白质分析。

摘要

血脑屏障 (BBB) 是一种动态屏障组织, 对各种病理生理和药理刺激反应。这些刺激导致的这种变化可以极大地调节药物向大脑的传递, 并通过扩展, 在治疗中枢神经系统疾病方面造成相当大的挑战。许多影响药物治疗的脑屏障变化涉及蛋白质的局部化和表达在内皮细胞的水平。事实上, 这种关于健康和疾病的脑屏障生理学的知识引起了对这些膜蛋白研究的极大兴趣。从基础科学研究的角度来看, 这意味着需要一个简单但健壮和可重复的方法来分离从实验动物身上采集的脑组织中的微血管。为了从新鲜分离的微血管中制备膜样品, 必须在内皮细胞中丰富样品制剂, 但在神经血管单元的其他细胞类型 (如星形胶质细胞、小胶质、神经细胞、毛细血管)。一个额外的好处是能够从单个动物身上制备样本, 以便在实验人群中捕捉蛋白质表达的真实变异性。本文详细介绍了一种用于大鼠脑微血管分离和制备膜样品的方法。通过使用四离心步骤, 在样品缓冲中加入葡聚糖, 可获得从样品中提取的微血管。该协议可以很容易地由其他实验室为自己的具体应用而调整。从该协议生成的样本已经证明, 从蛋白质分析实验中获得健壮的实验数据, 可以极大地帮助理解对生理、病理生理学和药理刺激的脑屏障反应。

引言

血脑屏障 (BBB) 存在于中枢神经系统 (CNS) 与系统循环之间的界面, 在维持脑稳态中起着至关重要的作用。具体地说, 脑屏障功能精确控制大脑胞外液中的溶质浓度, 并有效地提供脑组织所需的养分, 以满足中枢神经系统1的相当大的新陈代谢需求。这些作用意味着脑屏障, 主要存在于微血管内皮细胞的水平, 必须拥有离散机制, 使某些物质能够进入大脑实质, 同时确保潜在的有害外来化合物不能积累。事实上, 脑微血管内皮细胞不是 fenestrated 和表现有限的吞饮, 这确保缺乏非选择性通透性 2.此外, 脑微血管内皮细胞表达紧密连接和 adherens 结蛋白, 在相邻的内皮细胞之间形成物理 "海豹", 并极大地限制血液传播物质在脑中的旁细胞扩散。实质。事实上, 内源和外源物质的选择性渗透性需要吸收和流出转运体的功能表达式3。总的来说, 紧密的连接, adherens 连接, 和运输工作, 以保持独特的屏障性能的血屏障。

脑屏障是一个动态屏障, 反应生理, 病理生理学和药理刺激。例如, 缺氧/复氧应力已被证明可以调节临界紧致结蛋白 (occludin、zonulae occluden-1 (ZO-1)) 的表达, 这与增加旁细胞通透性的血管标记有关, 如作为蔗糖4,5,6。在创伤性脑损伤的设置方面也有类似的观察:7和外围炎症疼痛8,9。这些同样的疾病也可以调节在 BBB10,11,12,13,14的传输机制。事实上, 缺氧/复氧损伤增强了有机阴离子转运多肽 1a4 (Oatp1a4) 在脑屏障中的功能表达, 这可能导致特定 Oatp 运输基质的血液到大脑传输显著增加, 如胆酸和阿托伐他汀13。脑屏障的特性也可以通过药物治疗本身来改变, 这种机制可以为大脑和药物相互作用的药物有效性的深刻变化奠定基础。例如, 扑热息痛靶向脑微血管内皮细胞核受体信号机制, 增加临界外排转运蛋白 p-糖蛋白 (p gp) 的功能表达, 并修改时间依赖性镇痛由吗啡、阿片类镇痛药和建立的 P gp 运输基质15授予。彻底了解血脑屏障的变化, 这可能是由疾病或药物引起的, 也需要识别和鉴定特定的调控机制, 控制这些修改。事实上, 在控制紧结蛋白的分子表达的脑微血管内皮细胞中发现了离散信号通路16,17和运输商15, 18,19。这些观察结果表明, 复杂的分子通路参与了对脑屏障紧密连接和转运体的健康和疾病的调控。

在研究脑屏障的一个重大挑战是一个简单有效的方法, 从实验动物的大脑组织中分离微血管和后续制备膜样品的绝对要求。这些样品必须准备好, 使它们既丰富的脑微血管内皮细胞和有限的存在其他细胞类型。在过去的几年中, 科学家在科学文献13202122中报告了多种从啮齿动物脑中分离微血管的方法。本文介绍了一种简单、健壮、可重现的方法, 用于分离大鼠脑中的微血管, 并制备出一种能用于蛋白质表达分析的内皮膜富集样品。这种微血管隔离协议的优点是能够获得高质量的样品制备, 并能从单个实验动物那里得到足够的蛋白质产量。这样就可以考虑蛋白质表达中动物间的变异。此项协议的进展大大提高了脑屏障研究的健壮性, 因为现在可以避免对脑屏障蛋白变化的真实程度进行过度估计 (或估计不足)。另外, 加入葡聚糖的多重离心步骤, 可以改善实验样品中微血管的富集, 同时有助于去除不必要的细胞成分, 如神经元。

Access restricted. Please log in or start a trial to view this content.

研究方案

下面概述的所有程序都已由一个机构动物护理和使用委员会 (IACUC) 批准, 并符合国家卫生研究院和动物研究: 报告体内实验 (到达) 指南。协议的过程流程在图 1中描述。

1. 程序的设置

  1. 准备脑微血管缓冲 (BMB)。从称重54.66 克 d-甘露醇, 1.90 克 EGTA, 1.46 克 2-氨基-2-(羟甲基)-13-丙二醇 (即, 三) 基为清洁烧杯开始。加1.0 升去离子水。使用磁力搅拌器混合 BMB 缓冲器的元件。一旦溶液彻底混合, 将 pH 值调整为 7.4, 使用1.0 米 HCl。
  2. 在麻醉动物之前, 准备26% 葡聚糖 (兆瓦 7.5万) 溶液 (w/v)。按照以下步骤中所述, 准备葡聚糖溶液。
    注意: 提前准备这个解决方案是至关重要的, 因为葡聚糖可以大约 1.5-2 小时的时间溶解在水中的缓冲液中。
    1. 将粉葡聚糖 (26 克/100 毫升缓冲) 称量成干净的烧杯。
    2. 测量出适当的 BMB 体积, 并分配到一个单独的, 干净的烧杯。
    3. 慢慢地将 BMB 倒入含粉状葡聚糖的烧杯中。用玻璃搅拌棒在 BMB 的浇注过程中, 手工混合粉葡聚糖。
    4. 使用前立即将 pH 值调整为7.4 和1.0 米 HCl。
      注: 典型的从12个大大鼠 (男性或女性) 脑微血管的分离; 3 月的年龄; 200-250 克每一个) 需要200毫升葡聚糖溶液 (即52毫升的 BMB)。

2. 大大鼠脑组织的提取

  1. 经过所需的实验治疗, 麻醉大大鼠使用氯胺酮 (50 毫克/千克; 2.5 毫升/千克 ip) 和甲苯噻嗪 (10 毫克/毫升; 2.5 毫升/千克 i, p.)。稀释氯胺酮和甲苯噻嗪在0.9% 盐水到最后浓度的20毫克/毫升和4.0 毫克/毫升分别。弄死动物通过斩首使用削尖的断头台根据 IACUC 指南。对雄性和雌性大大鼠使用相同的手术方法。
  2. 用手术剪刀做一个横切口切除大鼠颅骨的皮肤。
  3. 使用 rongeurs, 小心地取出颅骨板并暴露大脑。
  4. 用刮刀取出大脑。将大脑分离, 将孤立的脑组织放置在含有5毫升 BMB 的50毫升圆锥管中。添加 1.0 ul 的蛋白酶抑制剂鸡尾酒每1.0 毫升的 BMB 缓冲区立即使用前。

3. 脑处理

  1. 将脑组织从50毫升锥形管转移到干净的培养皿中。
  2. 使用镊子, 轻轻滚动12.5 厘米直径滤纸的大脑, 以消除外层脑膜, 这是松散地坚持到大脑皮层。轻轻地按下脑组织对滤纸和卷的组织再次。在此步骤中经常打开过滤器纸张。
  3. 用镊子将脉络丛从大脑半球分离出来。
    注: 脉络丛出现于脑室表面的透明膜组织。
  4. 用镊子轻轻地压扁脑组织, 取出残余的脑膜和嗅觉灯泡。
  5. 将皮质脑组织放入冷冻玻璃砂浆中。加入5.0 毫升的 BMB 含有蛋白酶抑制剂鸡尾酒的砂浆。
  6. 使用架空功率均质机, 融汇脑组织使用15上下中风在 3700 rpm。使用10毫升砂浆和杵组织磨床进行均匀化。在每个样品的均匀化之间, 用70% 乙醇清洗杵。
    注意: 均匀性笔画应在速度和幅度上保持一致。
  7. 将匀浆倒入标签离心管。

4. 离心步骤

  1. 添加8.0 毫升26% 葡聚糖溶液, 每个标签离心管包含脑匀浆。
  2. 反转两次管, 然后彻底涡流样品。使用多个角度进行涡流, 以确保大脑匀浆液与26% 葡聚糖溶液彻底混合。
  3. 离心机样品在 5000 x g为15分钟在4°c。
    注意: 对于某些分析, 将脑微血管与脑实质进行比较是有益的。如果需要对脑实质中蛋白质表达的评估, 从这个离心步骤 (即脑实质分数) 中的上清可以收集和储存在-80 摄氏度, 以供将来使用。
  4. 使用真空吸尘器和玻璃巴斯德吸管去除上清液。
    注意: 必须注意不要干扰颗粒。否则, 将减少所采集的脑微血管数量, 这将显著降低该过程中蛋白质的产量。
  5. 并用重悬在含有蛋白酶抑制剂鸡尾酒的5.0 毫升 BMB 中的颗粒 (即 1.0 ul 蛋白酶抑制剂鸡尾酒每1.0 毫升的 BMB 缓冲器)。涡流颗粒, 确保彻底搅拌。
  6. 将8.0 毫升26% 葡聚糖添加到每个离心管和涡流中, 如本协议步骤 4.1-4.2 所述。
  7. 离心机样品在 5000 x g为15分钟在4°c。
  8. 使用真空瓶和玻璃吸管, 吸入上清, 并确保含有脑微血管的小球不会被破坏。
    注: 附着在管壁上的多余材料不含微血管, 应仔细清洗和清除。
  9. 重复步骤4.5 至 4.8, 另外两次。
  10. 4葡聚糖离心步骤完成后, 在每个颗粒和涡流中加入5.0 毫升的 BMB, 以并用重悬样品。
    注意: 在步骤4.10 完成后, 可以收集整个微血管来分析蛋白质的定位。这可以通过采取 50 ul 整除重新悬浮微血管颗粒和涂抹在玻璃显微镜幻灯片上完成。微血管然后热固定在95°c 10 分钟在一个加热块, 然后在冰冷的乙醇固定, 另外10分钟, 然后可以存储在4°c, 直到需要进行成像研究。

5. 离心制备全脑微血管膜标本

  1. 将样品转移到冷冻玻璃均质机上。
  2. 使用架空功率均质机, 融汇脑组织使用8-10 上下中风在 3000 rpm。采用10毫升砂浆和杵组织磨床进行均匀化。在每样样品均匀化后用70% 乙醇清洗杵。
  3. 将样品转移到清洁 ultracentrifuge 管。数和重量每个单独管。平衡和对管之前加载到 ultracentrifuge 转子。
    注: 所有 ultracentrifuge 管的称量和配对必须与瓶盖一起进行, 以确保准确测量管的重量。
  4. 离心机样品在 15万 x g为1小时在4°c。
  5. 使用真空瓶和玻璃巴斯德吸管, 吸入上清, 小心不要扰乱毛细血管膜颗粒。
  6. 根据颗粒的大小, 添加适当的存储缓冲量, 这是由去离子水和 BMB 的 1:1 (v/v) 比率组成。通常, 颗粒在 400-500 ul 的存储缓冲区中悬浮。添加蛋白酶抑制剂鸡尾酒到存储缓冲区的比率为 1.0 ul 每1.0 毫升的存储缓冲区。
  7. 在存储缓冲区中并用重悬颗粒的涡流样品。
  8. 使用玻璃巴斯德吸管, 转移毛细管膜样品到一个标记的1.5 毫升离心管。
  9. 通过针头注射器 5x, 以确保样品完全混合, 并没有细胞聚集存在。
  10. 将样品存放在摄氏-80 摄氏度, 直到需要进行分析。
    注: 用布拉德福德法测定各微血管膜样品的蛋白质含量。

Access restricted. Please log in or start a trial to view this content.

结果

实验流程为分离的大鼠脑微血管和为制备血管膜样品显示在图 1中。使用此处介绍的过程, 成功地从大鼠脑中分离出完整的微血管 (图 2A)。这些船只是在完成离心与葡聚糖, 并立即开始离心准备膜样品 (即完成步骤 4.10) 后获得。在这个图像中, 微血管被染色使用抗体对 Oatp1a4, 一个运输者已经证明是良好的表达在血浆膜的脑微血管?...

Access restricted. Please log in or start a trial to view this content.

讨论

本文介绍了一种简单有效的从大鼠脑组织中分离的微血管制备膜蛋白样品的方法。在文献13202122中, 已报告了几种分离大鼠脑微血管和/或生成来自孤立微孔的膜制剂的方法。,24. 虽然上文所述的微血管隔离协议在原理上是相似的, 但这一方法已经得到了优化, 能够制备出...

Access restricted. Please log in or start a trial to view this content.

披露声明

作者没有什么可透露的。

致谢

这项工作得到了国家卫生研究院 (R01-NS084941) 和亚利桑那生物医学研究委员会 (ADHS16-162406) 提供给 PTR 的赠款的支持。T32-HL007249 已经获得了从博士后任命到国家卫生培训补助金研究所的支持。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
Protease Inhibitor CocktailSigma-Aldrich#P8340Component of brain microvessel buffer
D-mannitolSigma-Aldrich#M4125Component of brain microvessel buffer
EGTASigma-Aldrich#E3889Component of brain microvessel buffer
Trizma BaseSigma-Aldrich#T1503Component of brain microvessel buffer
Dextran (MW 75,000)Spectrum Chemical Mftg Corp#DE125Dextran used in centrifugation steps to separate microvessels from brain parenchyma
ZetamineMWI Animal Health#501072General anesthetic
XylazineWestern Medical Supply#5530General anesthetic
0.9% saline solutionWestern Medical SupplyN/AGeneral anesthetic diluent
Filter Paper (12.5 cm diameter)VWR#28320-100Used for removal of meninges from brain tissue
Centrifuge TubesSarstedt#60.540.386Disposable tubes used for dextran centrifugation steps
Pierce™ Coomassie Plus (Bradford) AssayThermoFisher Scientific#23236Measurement of protein concentration in membrane preparations
Wheaton Overhead Power HomogenizerDWK Life Sciences#903475Required for homogenization of samples
10.0ml glass mortar and pestle tissue grinderDWK Life Sciences#358039Required for homogenization of samples
Hydrochloric AcidSigma-Aldrich#H1758Required for pH adjustment of buffers
Bovine Serum AlbuminThermoFisher Scientific#23210Protein standard for Bradford Assay
Standard ForcepsFine Science Tools#91100-12Used for dissection of brain tissue
Friedman-Pearson RongeursFine Science Tools#16020-14Used for opening skull to isolate brain
50 ml conical centrifuge tubesThermoFisher Scientific#352070Used for collection of brain tissue following isolation
Glass Pasteur PipetsThermoFisher Scientific#13-678-20CUsed for aspiration of cellular debris following dextran spins
Ethanol, anhydrousSigma-Aldrich#459836Used for cleaning tissue grinder; diluted to 70% with distilled water
Ultracentrifuge tubesBeckman-Coulter#41121703Used for ultracentrifugation of samples

参考文献

  1. Rolfe, D. F., Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 77 (3), 731-758 (1997).
  2. Brzica, H., Abdullahi, W., Ibbotson, K., Ronaldson, P. T. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke. J Cent Nerv Syst Dis. 9, 1179573517693802(2017).
  3. Ronaldson, P. T., Davis, T. P. Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res. 1623, 39-52 (2015).
  4. Witt, K. A., Mark, K. S., Hom, S., Davis, T. P. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 285 (6), H2820-H2831 (2003).
  5. McCaffrey, G., et al. Occludin oligomeric assemblies at tight junctions of the blood-brain barrier are altered by hypoxia and reoxygenation stress. J Neurochem. 110 (1), 58-71 (2009).
  6. Lochhead, J. J., et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 30 (9), 1625-1636 (2010).
  7. Lucke-Wold, B. P., et al. Bryostatin-1 Restores Blood Brain Barrier Integrity following Blast-Induced Traumatic Brain Injury. Mol Neurobiol. 52 (3), 1119-1134 (2015).
  8. Campos, C. R., Ocheltree, S. M., Hom, S., Egleton, R. D., Davis, T. P. Nociceptive inhibition prevents inflammatory pain induced changes in the blood-brain barrier. Brain Res. , 6-13 (2008).
  9. Ronaldson, P. T., Demarco, K. M., Sanchez-Covarrubias, L., Solinsky, C. M., Davis, T. P. Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab. 29 (6), 1084-1098 (2009).
  10. Seelbach, M. J., Brooks, T. A., Egleton, R. D., Davis, T. P. Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J Neurochem. 102 (5), 1677-1690 (2007).
  11. Ronaldson, P. T., Finch, J. D., Demarco, K. M., Quigley, C. E., Davis, T. P. Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. J Pharmacol Exp Ther. 336 (3), 827-839 (2011).
  12. Pop, V., et al. Early brain injury alters the blood-brain barrier phenotype in parallel with beta-amyloid and cognitive changes in adulthood. J Cereb Blood Flow Metab. 33 (2), 205-214 (2013).
  13. Thompson, B. J., et al. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery. J Cereb Blood Flow Metab. 34 (4), 699-707 (2014).
  14. Tome, M. E., et al. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab. 36 (11), 1913-1928 (2016).
  15. Slosky, L. M., et al. Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol. 84 (5), 774-786 (2013).
  16. Artus, C., et al. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab. 34 (3), 433-440 (2014).
  17. Yu, H., et al. Long-term exposure to ethanol downregulates tight junction proteins through the protein kinase Calpha signaling pathway in human cerebral microvascular endothelial cells. Exp Ther Med. 14 (5), 4789-4796 (2017).
  18. Abdullahi, W., Brzica, H., Ibbotson, K., Davis, T. P., Ronaldson, P. T. Bone morphogenetic protein-9 increases the functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier via the activin receptor-like kinase-1 receptor. J Cereb Blood Flow Metab. 37 (7), 2340-2345 (2017).
  19. Mesev, E. V., Miller, D. S., Cannon, R. E. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling. Mol Pharmacol. 91 (4), 373-382 (2017).
  20. Betz, A. L., Csejtey, J., Goldstein, G. W. Hexose transport and phosphorylation by capillaries isolated from rat brain. Am J Physiol. 236 (1), C96-C102 (1979).
  21. Yousif, S., Marie-Claire, C., Roux, F., Scherrmann, J. M., Decleves, X. Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Res. 1134 (1), 1-11 (2007).
  22. McCaffrey, G., et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 103 (6), 2540-2555 (2007).
  23. Brzica, H., et al. The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences. Pflugers Arch. 457 (6), 1381-1392 (2009).
  24. Ronaldson, P. T., Bendayan, R. HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem. 106 (3), 1298-1313 (2008).
  25. Pustylnikov, S., Sagar, D., Jain, P., Khan, Z. K. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J Pharm Pharm Sci. 17 (3), 371-392 (2014).
  26. Obermeier, B., Daneman, R., Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 19 (12), 1584-1596 (2013).
  27. Abdullahi, W., Davis, T. P., Ronaldson, P. T. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? AAPS J. 19 (4), 931-939 (2017).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

135

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。