JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

我们提出了一种基于石墨烯阵列的脑映射程序,以减少侵入性并提高时空分辨率。基于石墨烯阵列的表面电极表现出长期的生物相容性、机械灵活性和在卷曲大脑中用于大脑映射的适用性。该协议允许同时和顺序构建多种形式的感官图谱。

摘要

皮质图表示大脑皮层中对感觉运动刺激的位置依赖性神经反应的空间组织,从而能够预测生理相关行为。各种方法,如穿透电极、脑电图、正电子发射断层扫描、脑磁图和功能性磁共振成像,已被用于获得皮质图。然而,这些方法受到时空分辨率差、信噪比(SNR)低、成本高、非生物相容性或对大脑造成物理损害的限制。本研究提出了一种基于石墨烯阵列的体感映射方法,作为皮质电图的一个特点,该方法具有优异的生物相容性、高时空分辨率、理想的信噪比和最小的组织损伤,克服了以前方法的缺点。本研究证明了石墨烯电极阵列在大鼠体感映射中的可行性。所提出的方案不仅可以应用于躯体感觉皮层,还可以应用于其他皮层,例如听觉、视觉和运动皮层,为临床实施提供先进的技术。

引言

皮质图是一组局部斑块,表示大脑皮层中对感觉运动刺激的反应属性。它们是神经网络的空间形成,能够预测感知和认知。因此,皮质图可用于评估对外部刺激的神经反应和处理感觉运动信息1,2,3,4。有创和非侵入性方法可用于皮质映射。最常见的侵入性方法之一是使用皮质内(或穿透)电极来映射5,6,7,8。

使用穿透电极评估按需高分辨率皮质图面临着几个障碍。该方法太费力,无法获得像样的地图,而且侵入性太强,无法在临床上使用,从而阻碍了进一步发展。脑电图 (EEG)、正电子发射断层扫描 (PET)、脑磁图 (MEG) 和功能性磁共振成像 (fMRI) 等最新技术越来越受欢迎,因为这些技术侵入性较小且可重复。然而,鉴于其高昂的成本和解决率低,它们在有限数量的案例中使用9,10,11。近年来,具有优异信号可靠性的柔性表面电极引起了广泛的关注。基于石墨烯的表面电极表现出长期的生物相容性和机械灵活性,在复杂的大脑中提供稳定的记录12,13,14,15,16。我们小组最近开发了一种基于石墨烯的多通道阵列,用于皮质表面的高分辨率记录和位点特异性神经刺激。这项技术使我们能够长时间跟踪感官信息的皮层表征。

本文介绍了使用 30 通道石墨烯多电极阵列获取体感皮层大脑图所涉及的步骤。为了测量大脑活动,将石墨烯电极阵列放置在皮层的硬膜下区域,同时用木棍刺激前爪,前肢,后爪,后肢,躯干和胡须。记录体感区域的体感诱发电位 (SEP)。该协议也可以应用于其他大脑区域,例如听觉,视觉和运动皮层。

研究方案

所有动物处理程序均已获得仁川国立大学机构动物护理和使用委员会的批准(INU-ANIM-2017-08)。

1. 动物手术准备

注意:使用Sprague Dawley Rat(8-10周大)进行本实验,没有性别偏见。

  1. 腹膜内用90mg / kg氯胺酮和10mg / kg甲苯噻嗪混合物麻醉大鼠。为了在整个手术过程中保持所需的麻醉深度,当大鼠出现醒来迹象时,提供补充 45 mg/kg 氯胺酮和 5 mg/kg 甲苯噻嗪鸡尾酒。
  2. 确认大鼠处于深度麻醉状态,并定期检查身体反射,如脚趾捏、尾捏和角膜反射。
  3. 使用修剪器剃掉眼睛和耳朵后面的毛发。
  4. 在眼睛上涂抹眼药膏,以防止它们变干。

2. 皮质表面暴露手术

  1. 用立体定位适配器将鼠头固定在立体定位装置上。为了在手术过程中保持37°C的体温,将大鼠放在温控加热垫上。
  2. 用酒精和聚维酮碘交替擦洗三次对剃光区域进行消毒。
  3. 用镊子牢牢抓住头皮,用注射器将0.1mL利多卡因(2%)直接注射到头皮中,诱导手术区域的局部麻醉。
  4. 用手术刀做一个2-3厘米长的中线切口,拉开头皮,露出头骨。
  5. 用蚊子镊子夹住头皮,露出头骨。
  6. 用镊子刮擦颅骨表面以去除骨膜。
  7. 钝性解剖枕骨上的肌肉,以暴露脊髓顶部轴上方的大池。
  8. 用刀片切开大池排出脑脊液,并在大池切口内放无菌纱布,不断吸收脑脊液,防止脑水肿,尽量减少炎症。
  9. 用铅笔在头骨上标记一个矩形窗口,从右半球前膛开始,前后轴测量 3 毫米,右侧向测量 6 毫米。
    注意:标记必须与中线保持 1 mm 的距离,以避免上矢状窦破裂。
  10. 根据立体定位坐标钻标记区域,并用骨头去除头骨。
  11. 要去除硬脑膜,请将 26 G 针的尖端弯曲至 90°,在硬脑膜上开一个孔,提起硬脑膜,将镊子插入该孔中,然后用镊子撕裂。
  12. 将盐水润湿的纱布放在躯体感觉皮层上,以防止其变干。

3. 连接到记录系统的石墨烯电极阵列的制备

  1. 准备带有预兆连接器的石墨烯电极阵列。
    1. 通过应用盐溶液分离石墨烯多电极阵列而不会造成损坏。
    2. 从连接器上拆下参考线和接地线的外壳。
  2. 将带有石墨烯电极阵列的头部平台连接到连接器。
  3. 将连接到头级的接口电缆插入录制系统。
  4. 将石墨烯电极阵列复合物固定到立体定位臂中。
  5. 为了捕获来自所有通道的神经信号,请按照预定的立体定位坐标将阵列放置在躯体感觉皮层上,没有任何弯曲。
  6. 将参考线放在枕骨后面的组织下方,并将地线连接到接地的光学工作台。

4. 物理刺激和记录 SEP 以进行映射

  1. 打开神经信号记录软件。
  2. 设置记录软件环境:(1)设置SEP和陷波滤波器的采样率(60或50 Hz,家用电源的频率)以消除电源线中的噪声。
  3. 对于晶须映射,用细棍弯曲晶须。
  4. 经常用木棍戳前爪、前肢、后爪、后肢和躯干进行身体映射。
  5. 在数据采集系统中记录指定时间的神经信号。

5. 动物安乐死

  1. 在所有记录程序之后,使用>5%异氟醚麻醉处死大鼠并进行宫颈解剖。

6. 皮质映射的SEP测量

  1. 打开代号为 read_Intan_RHS2000_file.m 的 MATLAB 进行信号分析。
    注意:read_Intan_RHS2000_file.m 可以从"https://intantech.com/downloads.html?tabSelect=Software"下载。
  2. 单击 "运行" 按钮,选择文件扩展名为".rhs"的录制文件,然后等待文件被处理和读取。
  3. 输入命令"plot (t, amplifier_data("通道号",:))",创建记录数据的二维线图,找到标准必要专利,并计算所有通道中标准必要专利的幅度。
    注:在"频道号"处输入频道号。例如,"plot(t, amplifier_data(1,:))"创建通道 1 的 2D 线图。此外,当实验者计算响应的幅度时,选择从每个通道记录的响应。
  4. 根据标准必要专利的振幅,用不同的色调为网格着色来获取数据。
    注意:MATLAB 命令"imagesc"有助于更快地获取地形图。

结果

该协议描述了石墨烯多通道阵列如何安装在大脑表面。通过获取对物理刺激的神经反应并计算反应的幅度来构建体感图。 图1 显示了该实验的示意图。

图2A 显示了石墨烯电极阵列的结构特征。电极之间有基板的通孔。这些孔有助于电极牢固地接触皮质表面(图2B)。电极与皮层的强粘附有助于以更少的噪音记...

讨论

所提出的协议提供了一个深入的分步过程,解释了如何使用石墨烯电极阵列访问和映射大鼠的体感反应。协议获取的数据是标准必要专利,提供与每个身体部位突触相关的躯体感觉信息。

应考虑该协议的几个方面。在提取脑脊液以防止脑水肿和减轻炎症时,实验者不要损坏位于大池前面的脑干至关重要。

面部胡须提供有关周围环境的触觉感官信息,例如...

披露声明

我们没有什么可透露的。

致谢

这项工作得到了仁川国立大学(国际合作)对Sunggu Yang的支持。

材料

NameCompanyCatalog NumberComments
1mL syringeKOREAVACCINE CORPORATIONinjecting the drug for anesthesia 
3mL syringeKOREAVACCINE CORPORATIONinjecting the drug for anesthesia 
Bone rongeurFine Science Tools16220-14remove the skull
connectorGbrainConnect graphene electrode to headstage
drillFALCON toolgrind the skull
drill bitsOsstem implantgrind the skull
Graefe iris forceps slightly curved serratedvubuvudu-02-73010remove the tissue from the skull or hold wiper
graphene multielectrode arrayGbrainrecords signals from neuron
isofluraneHana Pharm Corporationsacrifce the subject
ketamineyuhan corporationused for anesthesia
lidocaine(2%)Daihan pharmaceutical local anesthetic
Matlab R2021bMathworksData analysis Software
mosquito hemostatsFine Science Tools91309-12fasten the scalp
ointmentAlconprevent eye from drying out 
povidoneGreen Pharmaceutical corporationdisinfect the incision area
RHS 32ch Stim/Record headstageintan technologiesM4032connect connector to interface cable and contain intan RHS stim/amplifier chip
RHS 6-ft (1.8m) Stim SPI interface cableintan technologiesM3206connect graphene electrode to headstage
RHS Stim/Recording controller softwareintan technologiesData Acquisition Software
RHS stimulation/ Recording controllerintan technologiesM4200
salineJW Pharmaceutical
scalpelHammacherHSB 805-03
stereotaxic instrumentstoeltingfasten the subject
sterile Hypodermic NeedleKOREAVACCINE CORPORATIONremove the dura mater
Steven Iris Tissue ForcepsKASCO50-2026remove the dura mater
surgical blade no.11FEATHERinscise the scalp
surgical sicssorsFine Science Tools14090-09inscise the scalp and remove the dura mater
wooden stickwhisker stimulation
xylazineBayer Koreaused for anesthesia

参考文献

  1. Leergaard, T. B., et al. Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. Journal of Comparative Neurology. 422 (2), 246-266 (2000).
  2. Craner, S. L., Ray, R. H. Somatosensory cortex of the neonatal pig: I. Topographic organization of the primary somatosensory cortex (SI). Journal of Comparative Neurology. 306 (1), 24-38 (1991).
  3. Benison, A. M., Rector, D. M., Barth, D. S. Hemispheric mapping of secondary somatosensory cortex in the rat. Journal of Neurophysiology. 97 (1), 200-207 (2007).
  4. Lee, M., et al. Graphene-electrode array for brain map remodeling of the cortical surface. NPG Asia Materials. 13 (1), (2021).
  5. Yang, S. C., Weiner, B. D., Zhang, L. S., Cho, S. J., Bao, S. W. Homeostatic plasticity drives tinnitus perception in an animal model. Proceedings of the National Academy of Sciences of the United States of America. 108 (36), 14974-14979 (2011).
  6. Yang, S., Zhang, L. S., Gibboni, R., Weiner, B., Bao, S. W. Impaired development and competitive refinement of the cortical frequency map in tumor necrosis factor-alpha-deficient mice. Cerebral Cortex. 24 (7), 1956-1965 (2014).
  7. Miyakawa, A., et al. Tinnitus correlates with downregulation of cortical glutamate decarboxylase 65 expression but not auditory cortical map reorganization. Journal of Neuroscience. 39 (50), 9989-10001 (2019).
  8. Yang, S., Su, W., Bao, S. Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons. Journal of Neurophysiology. 108 (6), 1567-1574 (2012).
  9. Beniczky, S., Schomer, D. L. Electroencephalography: basic biophysical and technological aspects important for clinical applications. Epileptic Disorders. 22 (6), 697-715 (2020).
  10. Kim, S. G., Richter, W., Uğurbil, K. Limitations of temporal resolution in functional MRI. Magnetic Resonance Medicine. 37 (4), 631-636 (1997).
  11. Cho, Z. H., et al. A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics. 8 (6), 1302-1323 (2008).
  12. Viventi, J., et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience. 14 (12), 1599-1605 (2011).
  13. Masvidal-Codina, E., et al. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nature Materials. 18 (3), 280-288 (2019).
  14. Blaschke, B. M., et al. Mapping brain activity with flexible graphene micro-transistors. 2D Materials. 4 (2), 025040 (2017).
  15. Park, S. W., et al. Epidural electrotherapy for epilepsy. Small. 14 (30), 1801732 (2018).
  16. Lim, J., et al. Hybrid graphene electrode for the diagnosis and treatment of epilepsy in free-moving animal models. NPG Asia Materials. 15 (1), 7 (2023).
  17. Hermanns, H., et al. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. British Journal of Anaesthesia. 123 (3), 335-349 (2019).
  18. Tchoe, Y., et al. Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Science Translational Medicine. 14 (628), (2022).
  19. Wilent, W. B., Contreras, D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neuroscience. 8 (10), 1364-1370 (2005).
  20. Insanally, M. N., Köver, H., Kim, H., Bao, S. Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience. 29 (17), 5456-5462 (2009).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

200

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。