登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 代表性结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文介绍了用于单分子相关力和荧光显微镜重建含核小体 DNA 系绳的详细实验程序。它进一步描述了几个下游实验,这些实验可以进行,以可视化染色质相互作用蛋白的结合行为并分析核小体物理性质的变化。

摘要

核小体构成真核染色质的主要单位,一直是许多关于其生物物理特性和与染色质结合蛋白相互作用的信息性单分子研究的重点。用于这些研究的 DNA 核小体重构通常涉及盐透析程序,该程序可精确控制沿 DNA 系绳形成的核小体的位置和数量。然而,该方案非常耗时,并且需要大量的 DNA 和组蛋白八聚体作为输入。为了提供一种替代策略,描述了一种利用组蛋白伴侣 Nap1 的单分子力和荧光显微镜的 原位 核小体重构方法。该方法使用户能够在任何 DNA 模板上组装核小体,而无需强大的核小体定位序列,按需调整核小体密度,并使用更少的试剂。 原位 核小体形成在几秒钟内发生,提供了更简单的实验工作流程,并方便地过渡到单分子测量。进一步描述了用于探测核小体机制和可视化单个蛋白质在染色质上的行为的两种下游分析的示例。

引言

真核染色质的主要包装单位是核小体,其中 ~147 个碱基对 (bps) 的 DNA 包裹在核心组蛋白的八聚体周围 1,2。除了基因组包装外,核小体结构还充当另一个丰富的生物物理调控层,染色质结合蛋白在执行其各种功能时可以利用该层 3,4。实验访问和测量核小体的物理特性在技术上具有挑战性,因为这些单元在微小的尺度(例如,纳米长度、皮微顿力)上执行,因此,它们的探测需要足够的灵敏度和精度才能有意义地告知功能。此外,染色质结合蛋白通常瞬时与其底物结合,并且大多数集成方法缺乏适当的时间分辨率来告知这些相互作用的动力学5。幸运的是,单分子技术的出现使得实时可视化和操纵单个蛋白质及其相互作用成为可能,揭示了有关在纳米尺度上发生的这些分子事件的机制信息6。特别是,单分子相关力和荧光显微镜 (smCFFM) 利用高分辨率荧光检测和力操作工具同时解析染色质和染色质-蛋白质复合物的力学、组成和配位 7,8

研究方案

材料 表中列出了研究中使用的试剂和设备的详细信息。

1. 生物素化 DNA 的制备

  1. 制备一个 120 μL 体积的反应,其中包含 20 μg λ DNA、33 μM 生物素-dCTP、33 μM 生物素-dUTP、33 μM 生物素-dATP、33 μM dGTP、10 单位 Klenow 酶和 1x NEB 缓冲液 2。
    注:该程序特别利用线性双链 (ds) 无甲基化噬菌体 λ 基因组 DNA (48,502 bps),其中包含 12 个核苷酸 (nt) 5' 单链 (ss) DNA 突出端23。然而,该方案可以适应使用任何长度或序列的线性 dsDNA,前提是它包含至少几个 nt 的 ss 5' 突出端,长度和 nt 序列决定了安装在每端的生物素化 nts 的数量,用于光阱之间的下游连接。此外,反应可以按比例缩小。例如,在 30 μL 体积的反应中可以使用 5 μg DNA。此外,以这种方式产生的 DNA 底物不受扭转约束。有关创建扭转约束 DNA 的方案,请参阅之前发布的报告24,25
  2. 在室温下孵育反应 15 分钟。
  3. ....

代表性结果

使用步骤 3 中描述的设置(图 1A),沿 DNA 系绳的核小体形成可视化为 2D 扫描上红色荧光病灶的外观(图 1B,左)或运动记录仪上随时间变化的轨迹(图 1B,右)。正确包裹的核小体产生的荧光轨迹在共聚焦检测的衍射极限 (~300 nm) 内随时间静止。值得注意的是,在衍射极限下彼此靠近形成的多个核小.......

讨论

所描述的方案为核小体重构提供了几个优点,包括最大限度地减少试剂和时间,以及能够沿任何(可能是天然的)DNA 序列形成伴侣依赖性核小体。此外, 原位 方法允许更简单的实验工作流程,并方便地过渡到核小体力学和蛋白质-染色质相互作用的单分子测定。另一方面,这种方法的局限性包括无法沿 DNA 指导核小体定位(即使掺入了强大的核小体定位序列)和精.......

披露声明

作者声明没有利益冲突。

致谢

G. N. L. C. 感谢美国国立卫生研究院 (NIH) 国家心理健康研究所 (National Institute of Mental Health of the National Institute of Health of the National Institutes of Health, NIH) 的资助编号为 F31MH132306。SL 得到了罗伯逊基金会、国际雷特综合症基金会和 NIH(奖项编号 R01GM149862)的支持。

....

材料

NameCompanyCatalog NumberComments
1x HR bufferN/AN/A30 mM tris acetate pH 7.5, 20 mM magnesium acetate, 50 mM potassium chloride, 0.1 mg/mL BSA 
1x PBS (Phosphate-buffered saline)N/AN/A137 mM sodium chloride, 2.7 mM potassium chloride, 10 mM sodium phosphate dibasic, 1.8 mM potassium phophate monobasic 
Acetic acid, glacialMillipore SigmaAX0074-6Use to make tris acetate
Biotin-11-dUTPJena BioscienceNU-803-BIOX-S
Biotin-14-dATPJena BioscienceNU-835-BIO14-S
Biotin-14-dCTPJena BioscienceNU-956-BIO14-S
Bovine Serum AlbuminMillipore SigmaA9418-50GDissolve in H2O and run through 0.22 um filter
Cy3 Maleimide Mono-Reactive DyeCytivaPA23031Maleimide functionalized Cy3 fluorophore
dGTPNew England BiolabsN0442S
Eppendorf Centrifuge 5425 RFisher Scientific05-414-051Benchtop centrifuge with cooling
Ethyl alcohol, PureMillipore Sigma459844
Ethylenediaminetetraacetic acid (EDTA)Millipore SigmaE9884Dissolve in H2O to 0.5 M
Human histone octamer (H4, L50C; H2A, K119C) N/AN/ARecombinant histone proteins and those harboring labeling mutations were purified in-house as described previously (see refs. 33, 34, 35, 36). Briefly, recombinant histones were expressed in BL21 (De3) pLySS cells (Promega). Inclusion bodies were isolated after sonication, and histones were extracted under denaturing conditions. Histones were dialyzed into buffer A (7 M urea, 10 mM tris hydrochloride pH 8.0, 100 mM sodium chloride, 1 mM EDTA, and 5 mM 2-mercaptoethanol), and the solution was added to a gravity column loaded with Q Sepharose Fast Flow (Cytiva). The flow through was then added to a gravity column loaded SP Sepharose Fast Flow (Cytiva), and the histones were eluted from the column by adding buffer A supplemented with 600 mM sodium chloride. Histones harboring labeling mutations (H4, L50C; H2A, K119C) were purified and then conjugated to the desired fluorophore via maleimide-functionalized dyes (Cytiva, Lumidyne) using a 20:1 dye-to-protein molar ratio (see refs. 33, 34). Histone octamers were assembled by adding an equal molar ratio of each wild-type or fluorophore-labeled histone under denaturing conditions, dialyzed into a high-salt buffer containing 2 M sodium chloride, and then purified by size exclusion chromatography as described previously (see refs. 36, 37). Alternatively, individual histone proteins and ready-made histone octamers can be purchased commercially (e.g., Epicypher). 
Image bufferN/AN/A20 mM tris hydrochloride pH 8.0, 100 mM sodium chloride
Klenow Fragment (3' to 5' exo-)New England BiolabsM0212S
Lambda DNA (dam-, dcm-)Thermo Fisher ScientificSD0021Methylation-free λ DNA
LD655-MALLumidyne Technologies9Maleimide functionalized LD655 fluorophore
Linker histone H1.4 (A4C)N/AN/APurified recombinant protein made in-house (see ref. 38)
LUMICKS C-Trap DymoLUMICKSN/ADual-trap configuration; standard materials for instrument provided by manufacturer
Magnesium acetate solutionMillipore Sigma63052-100MLUse to make HR buffer
NEBuffer 2New England BiolabsB7002SIncluded with Klenow Fragment kit
Pluronic F-127Millipore SigmaP2443-250GDissolve in H2O and run through 0.22 um filter
Potassium chlorideMillipore SigmaP3911Use to make PBS and HR buffer
Potassium phosphate monobasicMillipore SigmaP0662Use to make PBS
S. cerevisiae Nap1N/AN/ANap1 was purified in-house as previously described (see refs. 33, 34). Alternatively, Nap1 can be purchased commercially (e.g., Active Motif).
Sodium acetateMillipore Sigma241245Dissolve in H2O to 3 M
Sodium chlorideMillipore SigmaS9888Use to make PBS and image buffer
Sodium phosphate dibasicMillipore SigmaS9763Use to make PBS
SPHERO Biotin Coated Particles (3.0-3.4 µm)SpherotechTP-30-5
Thermo Scientific NanoDrop 2000/2000c SpectrophotometerFisher ScientificND2000NanoDrop Spectrophotometer
Tris BaseFisher ScientificBP152-500Dissolve in H2O and adjust to appropriate pH; use to make image buffer and tris acetate

参考文献

  1. Kornberg, R. D. Chromatin structure: A repeating unit of histones and DNA. Science. 184, 868-871 (1974).
  2. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., Crystal Richmond, T. J. structure of the nucleosome core particle at 2....

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

211

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。