JoVE Logo

登录

Concept
Experiment

Mononuclear Cell Isolation from Mouse Brain: A Density Gradient Centrifugation Technique to Isolate Brain Resident Mononuclear Cells


成績單


Mononuclear cells in the brain, comprising lymphocytes and monocytes, play crucial roles in maintaining brain function and homeostasis.

To isolate these mononuclear cells, first, take a freshly harvested mouse brain perfused with saline. 

Perfusion allows removal of blood and its components from the blood vessels, enabling  isolation of brain-resident immune cells in the subsequent steps.

Now, rinse the brain with suitable media to remove adherent red blood cells. Follow up the rinse with mincing to acquire small tissue pieces.

Homogenize the tissue pieces to obtain a suspension of single cells and cell fragments.

To this suspension, then add chilled media and suitable density gradient medium in appropriate volumes to form a low-density gradient medium.

Next, add a specific volume of a high-density gradient medium; the high-density gradient media forms a separate layer at the bottom, creating a discontinuous density gradient.   

Centrifuge the suspension at high speed and low temperature conditions. Mononuclear cells occupy the interface between the two density gradient media layers.

Discard the top layer containing cellular debris and myelin - the fatty tissue sheath surrounding the nerve cell axons.

Transfer the interface layer into a fresh tube containing a suitable media and centrifuge.

Purified mononuclear cells sediment as pellet and can be resuspended in buffer for further analysis.

使用情况统计信息
JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。