Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The porcine model of liver normothermic machine perfusion (NMP), described here, can be successfully used to study NMP as a preservation strategy, a tool for viability assessment, and a platform for organ repair. It holds a high translational value, however it is technically challenging and labor-intensive.

Abstract

Porcine models of liver ex situ normothermic machine perfusion (NMP) are increasingly being used in transplant research. Contrary to rodents, porcine livers are anatomically and physiologically close to humans, with similar organ size and bile composition. NMP preserves the liver graft at near-to-physiological conditions by recirculating a warm, oxygenated, and nutrient-enriched red blood cell-based perfusate through the liver vasculature. NMP can be used to study ischemia-reperfusion injury, preserve a liver ex situ before transplantation, assess the liver's function prior to implantation, and provide a platform for organ repair and regeneration. Alternatively, NMP with a whole blood-based perfusate can be used to mimic transplantation. Nevertheless, this model is labor-intensive, technically challenging, and carries a high financial cost.

In this porcine NMP model, we use warm ischemic damaged livers (corresponding to donation after circulatory death). First, general anesthesia with mechanical ventilation is initiated, followed by the induction of warm ischemia by clamping the thoracic aorta for 60 min. Cannulas inserted in the abdominal aorta and portal vein allow flush-out of the liver with cold preservation solution. The flushed-out blood is washed with a cell saver to obtain concentrated red blood cells. Following hepatectomy, cannulas are inserted in the portal vein, hepatic artery, and infra-hepatic vena cava and connected to a closed perfusion circuit primed with a plasma expander and red blood cells. A hollow fiber oxygenator is included in the circuit and coupled to a heat exchanger to maintain a pO2 of 70-100 mmHg at 38 °C. NMP is achieved by a continuous flow directly through the artery and via a venous reservoir through the portal vein. Flows, pressures, and blood gas values are continuously monitored. To evaluate the liver injury, perfusate and tissue are sampled at predefined time points; bile is collected via a cannula in the common bile duct.

Introduction

Liver transplantation is the sole definitive treatment for end-stage liver failure; however, its success is limited by a persistent imbalance between patients on the waitlist and the availability of potential donor organs1. To increase the donor pool, donor criteria have been gradually extended in the last decade, including older donor age, liver steatosis, and donation after circulatory death (DCD)2,3. During a DCD procedure, the liver invariably suffers a period of warm ischemia between the withdrawal of life-sustaining therapy, declaration of death, and in situ cooling and p....

Protocol

All experiments were conducted after KU Leuven animal care committee approval and in line with European guidelines.

1. Animal information

NOTE: Male TOPIGS TN70 pigs, aged 3 months, with a body weight of approximately 30 kg and liver weight of 600-700 g are used for this study protocol.

  1. Keep the animals under a 12 h day/night rhythm in single pens with free access to food and tap water and visual, olfactory, and auditory contact between .......

Representative Results

The perfusion protocol presented uses the self-regulation of the liver's blood flow to achieve stable hemodynamic conditions for up to 24 h and simulate the physiological distribution of blood flow in the portal vein and hepatic artery. Figure 1 represents a schematic overview of the perfusion circuit. Figure 2A shows a consistent distribution of blood flow, with the portal vein and hepatic artery contributing approximately 75% and 25% of total hepatic flow .......

Discussion

Here, we have detailed our experience with porcine liver NMP. The advantages of this technique include high translational value and versatility. Porcine liver NMP can be applied either to investigate and increase one's understanding of this enhanced preservation technique, or alternatively, to mimic transplantation. This setup allows manual control over every aspect of the perfusion, enabling adjusting both portal and arterial pressure and flow in various ways.

To simulate clinical practic.......

Acknowledgements

The authors would like to thank all research students from the faculty of medicine of KU Leuven involved in these experiments.

....

Materials

NameCompanyCatalog NumberComments
Alaris GH Plus syringe pumpBD Care Fusion80023 UN 01-G
Anesthesia deviceDrägerTitus
Arterial catheter Cavafix CertoBraun, Melsungen, GermanyBRAU4152557
Blood gas analyzerRadiometerABL815
Calcium gluconate 10%Braun, Melsungen, Germany570/13596667/1214
CapnographDrägerScio
Cell saverMedtronicAutoLog
Centrifugal pump BiomedicusMedtronic85315 REV 3.0
Centrifuge Rotina 420R HettichVWR521-1156
Custom made perfusion circuitMedtronicM323901C
Disposable set cell saverMedtronicATLS24
DLP Single stage venous cannula, straight 20FMedtronic66120
EpoprostenolGlaxoSmithKline Belgium, Wavre, BelgiumFlolan
Fentanyl-Janssen 0.05 mg/mLJanssenHK-08700
Flow sensor BioPro TTEm-Tec12271
Formaldehyde 4%VWRVWRK4078.9005
Freezer -80 °CNew Brunswick ScientificU570-86
FridgeLiebherrCUP 3513
GeloplasmaFresenius-Kabi, Bad Homburg, Germanyfreeflex
Heater coolerStöckert-Shiley, Sorin group16-02-1950
Heparin 5000 IE/mLLeo Pharma, Ballerup, DenmarkHeparinLeo
Hepatic artery canulaMedtronicBIO-MEDICUS 12F
IGL-1 organ preservation solutionInstitut Georges LopezIGL-1/1000/D
In-line blood gas analyzerTERUMOCalibrator 3MCDI 540/CDI 500
Insulin 200 IU ActrapidNovo Nordisk, Dagsvaerd, DenmarkMEDI-00018
Isoflurane 1000 mg/g Inhalation vapourChanelle PharmaIso-Vet
IV catheter BD Insyte-W 20 GBD381334
Liquid nitrogen tankKGW IsothermS22
Mersilene 250CM M3 USP2/0 non needled ligapakJNJ medicalF4503
Mersilene 250CM M3.5 USP0 non needled ligapakJNJ medicalF4504
Mersilene 5X70CM M3.5 USP0 non needledJNJ medicalEH6935H
Mersilene 6X45CM M3 USP2/0 non needledJNJ medicalEH6734H
Micro pipettes 1000 µLSocorex82,51,000
MonitoringSiemensSC 8000
Plasmalyte ViafloBaxterPlasmalyte Viaflo
Portal vein canulaCALMED LABS18F RV-40018
Pressure sensorStöckert-Shiley, Sorin group22-06-2000
Pressure servo regulatorMedtronicBM 9505-2
Prolene 4-0JNJ medicalEH7151H
Roller pumpCobe Century USA468048-000 REV C
Sodium bicarbonate 8.4%Braun, Melsungen, Germany362 2339
Sodium taurocholateSigma Aldrich, Burlington, USA86339
Surgical scalpel nr 24Swann Morton0211
Venous catheter, 3-lumen; 12FRARROWAK-12123-F
Vicryl Vio 250CM M2 USP3/0 non needled gigapakJNJ medicalV1205G
Xylazine 2%VMD Livestock pharmaXYL-M 2%
Zinacef Cefuroxime 750 mgGlaxoSmithKline Belgium, Wavre, BelgiumNDC 0173-0353-32
Zoletil 100VirbacZoletil 100

References

  1. Dunson, J. R., Bakhtiyar, S. S., Joshi, M., Goss, J. A., Rana, A. Intent-to-treat survival in liver transplantation has not improved in 3 decades due to donor shortage relative to waitlist growth. Clinical Transplantation. 35 (10), e14433 (2021).
  2. Monbaliu, D., Pirenne, J., Talbot, D.

Explore More Articles

PorcineNormothermicIsolatedLiverPerfusionTransplantResearchIschemia reperfusionOrgan PreservationOrgan RepairRegenerationWarm IschemiaDonation After Circulatory DeathCannulationPerfusion CircuitOxygenatorBlood GasLiver InjuryTissue SamplingBile

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved