Exon skipping is currently a most promising therapeutic option for Duchenne muscular dystrophy (DMD). To expand the applicability for DMD patients and to optimize the stability/function of the resulting truncated dystrophin proteins, a multi-exon skipping approach using cocktail antisense oligonucleotides was developed and we demonstrated systemic dystrophin rescue in a dog model.
Cell membrane wounding via two-photon laser is a widely used method for assessing membrane resealing ability and can be applied to multiple cell types. Here, we describe a protocol for in vitro live-imaging of membrane resealing in dysferlinopathy patient cells following two-photon laser ablation.
Various antisense oligonucleotides (AONs) have been shown to induce exon inclusion (splice modulation) and rescue SMN expression for spinal muscular atrophy (SMA). Here, we describe a protocol for AON lipotransfection to induce exon inclusion in the SMN2 gene and the evaluation methods to determine the efficacy in SMA patient fibroblasts.
Copyright © 2024 MyJoVE Corporation. Alle Rechte vorbehalten