Sign In

School of Medicine, Nihon University

6 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna
M. Rezaul Karim 1, Keita Endo 2, Adrian W Moore 3, Hiroaki Taniguchi 1
1Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 2Laboratory for Circuit Mechanisms of Sensory Perception, RIKEN Brain Science Institute, 3Disease Mechanism Research Core, RIKEN Brain Science Institute

Herein we describe the process of whole mount immunostaining of Drosophila antennae, which enables us to better understand the molecular mechanisms involved in the diversification of olfactory receptor neurons (ORN)s.

image

Developmental Biology

An Efficient Method to Obtain Dedifferentiated Fat Cells
Hiroaki Taniguchi *1, Tomohiko Kazama *1, Kazuhiro Hagikura *1, Chii Yamamoto 1, Minako Kazama 1, Yuki Nagaoka 1, Taro Matsumoto 1
1Division of Cell Regeneration and Transplantation, School of Medicine, Nihon University

We have modified the conditions for DFAT cell generation and provide herein information regarding the use of an improved growth medium for the production of these cells.

image

Developmental Biology

Imaging of Cell Shape Alteration and Cell Movement in Drosophila Gastrulation Using DE-cadherin Reporter Transgenic Flies
M. Rezaul Karim 1, Tomohiro Haruta 2, Taro Matsumoto 3, Hiroki Oda 2, Hiroaki Taniguchi 3,4,5
1Biotechnology and Genetic Engineering Department, Jahangirnagar University, 2JT Biohistory Research Hall, 3Division of Cell Regeneration and Transplantation, School of Medicine, Nihon University, 4Graduate School of Life and Medical Sciences, Doshisha University, 5Institute of Genetics and Animal Breeding of the Polish Academy of Sciences

Herein we describe a procedure to capture live images of Drosophila gastrulation. This has enabled us to better understand the apical constriction involved in early development and further analyze mechanisms governing cellular movements during tissue structure modification.

image

Biochemistry

A Protein Preparation Method for the High-throughput Identification of Proteins Interacting with a Nuclear Cofactor Using LC-MS/MS Analysis
Megumi Tsuchiya *1, M. Rezaul Karim *2, Taro Matsumoto 3, Hidesato Ogawa 1, Hiroaki Taniguchi 3,4,5
1Graduate School of Frontier Biosciences, Osaka University, 2Department of Biotechnology and Genetic Engineering, Jahangirnagar University, 3Division of Cell Regeneration and Transplantation, School of Medicine, Nihon University, 4Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 5Graduate School of Life and Medical Sciences, Doshisha University

We have established a method for the purification of coregulatory interaction proteins using the LC-MS/MS system.

image

Biochemistry

Manipulating Living Cells to Construct Stable 3D Cellular Assembly Without Artificial Scaffold
Takehiro Yamazaki *1, Hiroaki Taniguchi *2, Shoto Tsuji 1, Shiho Sato 1, Takahiro Kenmotsu 1, Kenichi Yoshikawa 1, Koichiro Sadakane 1
1Faculty of Life and Medical Sciences, Doshisha University, 2The Institute of Genetics and Animal Breeding, Polish Academy of Sciences

We demonstrate a novel method for constructing a single-cell-based 3-dimensional (3D) assembly without an artificial scaffold.

image

Developmental Biology

Neurogenesis Using P19 Embryonal Carcinoma Cells
Paweł Leszczyński 1, Magdalena Śmiech 1, Aamir S. Teeli 1, Aleksandra Zołocińska 2, Anna Słysz 2, Zygmunt Pojda 2, Mariusz Pierzchała 3, Hiroaki Taniguchi 1
1Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 2Department of Regenerative Medicine, Maria Skłodowska-Curie Institute - Oncology Center, 3Department of Genomics and Biodiversities, Institute of Genetics and Animal Breeding, Polish Academy of Sciences

The P19 mouse embryonic carcinoma cell line (P19 cell line) is widely used for studying the molecular mechanism of neurogenesis with great simplification compared to in vivo analysis. Here, we present a protocol for retinoic acid-induced neurogenesis in the P19 cell line.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved