7.3 : Long-patch Basen-Exzisionsreparatur
Since the discovery of the two BER pathways, there has been a debate about how a cell chooses one pathway over the other and the factors determining this selection. Numerous in vitro experiments have pointed out multiple determinants for the sub-pathway selection. These are:
- Lesion type: Depending on the type of base damage, a specific DNA glycosylase - mono or bifunctional, is recruited to the damaged site. While the sequential action of a monofunctional glycosylase favors long patch repair events, the bifunctional glycosylase drives short-patch BER.
- State of the cell cycle: The major protein participants that distinguish the long-patch BER from the alternative pathway of short-patch BER are proliferating cell nuclear antigen (PCNA), protein replication factor C (RF-C), and the flap structure-specific endonuclease 1 (FEN1). PCNA is particularly recognized as the lynchpin of this pathway. It acts both as the scaffold to anchor the polymerase at the damaged site and binds to FEN-1 to facilitate its nuclease activity. Furthermore, RF-C is required to load the PCNA onto the DNA. All of these proteins are also required during DNA replication, suggesting that long-patch BER mends damages to replicating DNA while short-patch is used for repairing resting DNA.
- ATP shortage: It has also been observed that while single nucleotide or short patch BER predominates under normal physiological conditions, under conditions of ATP shortage, the preference is shifted towards long-patch BER. This is because poly(ADP-ribose) can serve as a unique source of ATP during the ligation step in BER.
Aus Kapitel 7:
Now Playing
7.3 : Long-patch Basen-Exzisionsreparatur
DNA-Reparatur und Rekombination
7.0K Ansichten
7.1 : Überblick über die DNA-Reparatur
DNA-Reparatur und Rekombination
31.1K Ansichten
7.2 : Basenexzisionsreparatur
DNA-Reparatur und Rekombination
22.5K Ansichten
7.4 : Nukleotid-Exzisionsreparatur
DNA-Reparatur und Rekombination
11.5K Ansichten
7.5 : Transläsions-DNA-Polymerasen
DNA-Reparatur und Rekombination
10.0K Ansichten
7.6 : Reparatur von Doppelstrangbrüchen
DNA-Reparatur und Rekombination
12.7K Ansichten
7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen
DNA-Reparatur und Rekombination
9.2K Ansichten
7.8 : Homologe Rekombination
DNA-Reparatur und Rekombination
50.6K Ansichten
7.9 : Reaktivierung blockierter Replikationsgabeln
DNA-Reparatur und Rekombination
5.8K Ansichten
7.10 : Genkonvertierung
DNA-Reparatur und Rekombination
9.8K Ansichten
7.11 : Überblick über Transposition und Rekombination
DNA-Reparatur und Rekombination
15.6K Ansichten
7.12 : DNA-only Transposons
DNA-Reparatur und Rekombination
14.6K Ansichten
7.13 : Retroviren
DNA-Reparatur und Rekombination
12.4K Ansichten
7.14 : LTR-Retrotransposons
DNA-Reparatur und Rekombination
17.6K Ansichten
7.15 : Nicht-LTR-Retrotransposons
DNA-Reparatur und Rekombination
11.6K Ansichten
See More