The centroid of a body is a crucial concept in engineering and physics. Finding the centroid of a body can help determine its stability, its balance point, and even its design. In this context, consider a thin wire bent in the form of a quarter circular arc. Polar coordinates are used to calculate the centroid. The wire is first divided into small differential elements of a length equal to the radius multiplied by the differential angle.

The x-coordinates and y-coordinates of each element's centroid can then be expressed in terms of the radius and the angle made by the element with respect to the x-axis. The centroid of the arc is then obtained by computing a weighted average of all these elements, where each element's weight is proportional to its length.

Since the wire is a quarter circle, the differential element can be integrated from the limits of zero to π/2. The result gives the centroid coordinates for the quarter circle wire segment. In this case, the x-coordinates and y-coordinates of the centroid are numerically equal due to the circular symmetry of the problem.

This method can also be applied to determine the centroid of curved arch trusses. The calculated centroid, in turn, can be used to determine the maximum load the arch can carry without collapsing or the forces acting on specific points of the arch. Knowing the centroid of a body offers numerous advantages in engineering and is crucial to the design and stability of structures.

Tags
CentroidBodyEngineeringPhysicsStabilityBalance PointDesignPolar CoordinatesDifferential ElementsQuarter Circular ArcX coordinatesY coordinatesWeighted AverageCircular SymmetryCurved Arch TrussesMaximum LoadStructural Stability

Aus Kapitel 9:

article

Now Playing

9.4 : Centroid of a Body: Problem Solving

Center of Gravity and Centroid

979 Ansichten

article

9.1 : Schwerpunkt

Center of Gravity and Centroid

1.3K Ansichten

article

9.2 : Schwerpunkt

Center of Gravity and Centroid

1.0K Ansichten

article

9.3 : Schwerpunkt eines Körpers

Center of Gravity and Centroid

713 Ansichten

article

9.5 : Schwerpunkt für das Umdrehungsparaboloid

Center of Gravity and Centroid

434 Ansichten

article

9.6 : Verbundstoff-Körper

Center of Gravity and Centroid

987 Ansichten

article

9.7 : Sätze von Pappus und Guldinus

Center of Gravity and Centroid

1.6K Ansichten

article

9.8 : Theoreme von Pappus und Guldinus: Problemlösung

Center of Gravity and Centroid

580 Ansichten

article

9.9 : Resultante einer allgemeinen verteilten Belastung

Center of Gravity and Centroid

577 Ansichten

article

9.10 : Flüssigkeitsdruck

Center of Gravity and Centroid

482 Ansichten

article

9.11 : Flüssigkeitsdruck über flache Platte mit konstanter Breite

Center of Gravity and Centroid

1.0K Ansichten

article

9.12 : Flüssigkeitsdruck über gekrümmter Platte mit konstanter Breite

Center of Gravity and Centroid

702 Ansichten

article

9.13 : Flüssigkeitsdruck über eine flache Platte mit variabler Breite

Center of Gravity and Centroid

790 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten