Directly acting muscle relaxants like dantrolene and botulinum toxin (BoNT) have distinct mechanisms and applications. Dantrolene, a hydantoin derivative, acts on the ryanodine receptor (RYR1) in skeletal muscle cells. RYR1 are calcium channels present at the sarcoplasmic reticulum membrane. In response to excitation, they release calcium ions from the sarcoplasmic reticulum to the cytosol. Calcium promotes actin-myosin-mediated contraction of muscles.

The binding of dantrolene to the RYR1 inhibits the opening of the channel and blocks the release of calcium. However, dantrolene does not affect RYR2 receptors in cardiac or smooth muscle, so these organs remain minimally affected.

Dantrolene also treats malignant hyperthermia, a life-threatening heritable condition often triggered by general anesthetics or neuromuscular blockers. In some cases, individuals cannot sequester excess calcium via calcium transporters, while other affected patients have altered calcium-induced calcium release. A small calcium influx triggers a more significant calcium release from intracellular stores. The calcium release persists, muscle contraction continues, generating lactic acid and increasing the body temperature. Prompt treatment of patients with dantrolene helps reduce lactic acidosis and body temperature by inhibiting calcium release.

BoNT is a neurotoxin that acts on the presynaptic neuron's vesicle fusion proteins and inhibits acetylcholine release at the neuromuscular junction. They temporarily impede the function of specific muscles or nerves, interfering with neurotransmission, which helps paralyze muscles and relieve pain. BoNT has two subunits, a heavy chain of 100 kDa and a light chain of 50 kDa. The light chain is the active part of the neurotoxin. It proteolytically cleaves vesicle fusion proteins like SNAP-25 and synaptobrevin-2 and inhibits the exocytosis of acetylcholine-filled vesicles. BoNT is helpful in the treatment of cerebral palsy, multiple sclerosis, or cervical dystonia.

Tags
Directly Acting Muscle RelaxantsDantroleneBotulinum ToxinBoNTRyanodine ReceptorRYR1Calcium ChannelsMalignant HyperthermiaNeuromuscular JunctionAcetylcholine ReleaseNeurotransmissionMuscle ParalysisCerebral PalsyMultiple SclerosisCervical Dystonia

Aus Kapitel 7:

article

Now Playing

7.8 : Directly Acting Muscle Relaxants: Dantrolene and Botulinum Toxin

Skeletal Muscle Relaxants

568 Ansichten

article

7.1 : Neuromuskuläre Verbindung und Blockade

Skeletal Muscle Relaxants

2.3K Ansichten

article

7.2 : Klassifizierung von Skelettmuskelrelaxantien

Skeletal Muscle Relaxants

2.2K Ansichten

article

7.3 : Nichtdepolarisierende (kompetitive) neuromuskuläre Blocker: Wirkmechanismus

Skeletal Muscle Relaxants

1.1K Ansichten

article

7.4 : Nichtdepolarisierende (kompetitive) neuromuskuläre Blocker: Pharmakologische Wirkungen

Skeletal Muscle Relaxants

303 Ansichten

article

7.5 : Nichtdepolarisierende (kompetitive) neuromuskuläre Blocker: Pharmakokinetik

Skeletal Muscle Relaxants

386 Ansichten

article

7.6 : Depolarisierende Blocker: Wirkmechanismus

Skeletal Muscle Relaxants

926 Ansichten

article

7.7 : Depolarisierende Blocker: Pharmakokinetik

Skeletal Muscle Relaxants

252 Ansichten

article

7.9 : Skelettmuskelrelaxanzien: Nebenwirkungen

Skeletal Muscle Relaxants

286 Ansichten

article

7.10 : Skelettmuskelrelaxanzien: Therapeutische Anwendungen

Skeletal Muscle Relaxants

408 Ansichten

article

7.11 : Spasmolytische Mittel: Chemische Klassifizierung

Skeletal Muscle Relaxants

812 Ansichten

article

7.12 : Peripher und zentral wirkende Muskelrelaxanzien: Ein Vergleich

Skeletal Muscle Relaxants

2.8K Ansichten

article

7.13 : Zentral wirkende Muskelrelaxanzien: Therapeutische Anwendungen

Skeletal Muscle Relaxants

497 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten