Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Die großflächige Probeninspektion mit nanoskaliger Auflösung hat ein breites Anwendungsspektrum, insbesondere für nanofabrizierte Halbleiterwafer. Rasterkraftmikroskope können ein großartiges Werkzeug für diesen Zweck sein, sind aber durch ihre Abbildungsgeschwindigkeit begrenzt. Bei dieser Arbeit werden parallele aktive Cantilever-Arrays in AFMs verwendet, um Inspektionen mit hohem Durchsatz und großem Maßstab zu ermöglichen.
Ein Rasterkraftmikroskop (AFM) ist ein leistungsstarkes und vielseitiges Werkzeug für nanoskalige Oberflächenstudien, um 3D-Topographiebilder von Proben zu erfassen. Aufgrund ihres begrenzten Bildgebungsdurchsatzes sind AFMs jedoch nicht weit verbreitet für groß angelegte Inspektionszwecke. Forscher haben Hochgeschwindigkeits-AFM-Systeme entwickelt, um dynamische Prozessvideos bei chemischen und biologischen Reaktionen mit Dutzenden von Bildern pro Sekunde aufzuzeichnen, und das auf Kosten einer kleinen Bildgebungsfläche von bis zu mehreren Quadratmikrometern. Im Gegensatz dazu erfordert die Inspektion großflächiger nanofabrizierter Strukturen, wie z. B. Halbleiterwafer, eine Abbildung einer statischen Probe mit räumlicher Auflösung im Nanobereich über Hunderte von Quadratzentimetern mit hoher Produktivität. Herkömmliche AFMs verwenden eine einzelne passive Cantilever-Sonde mit einem optischen Strahlablenkungssystem, das während der AFM-Bildgebung jeweils nur ein Pixel erfassen kann, was zu einem geringen Bilddurchsatz führt. Diese Arbeit verwendet eine Reihe von aktiven Cantilevern mit eingebetteten piezoresistiven Sensoren und thermomechanischen Aktuatoren, die einen gleichzeitigen Multi-Cantilever-Betrieb im Parallelbetrieb für einen erhöhten Bilddurchsatz ermöglichen. In Kombination mit Nanopositionierern mit großer Reichweite und geeigneten Steuerungsalgorithmen kann jeder Cantilever einzeln gesteuert werden, um mehrere AFM-Bilder aufzunehmen. Mit datengesteuerten Nachbearbeitungsalgorithmen können die Bilder zusammengefügt und eine Fehlererkennung durchgeführt werden, indem sie mit der gewünschten Geometrie verglichen werden. In diesem Artikel werden die Prinzipien des kundenspezifischen Rasterkraftmikroskops unter Verwendung der aktiven Cantilever-Arrays vorgestellt, gefolgt von einer Diskussion über praktische Versuchsüberlegungen für Inspektionsanwendungen. Ausgewählte Beispielbilder von Silizium-Kalibriergittern, hochorientiertem pyrolytischem Graphit und extrem ultravioletten Lithographiemasken werden mit einem Array von vier aktiven Cantilevern ("Quattro") mit einem Spitzenabstand von 125 μm aufgenommen. Mit mehr technischer Integration kann dieses großflächige Bildgebungswerkzeug mit hohem Durchsatz messtechnische 3D-Daten für UV-Masken (EUV), chemisch-mechanische Planarisierungsprüfung (CMP), Fehleranalysen, Displays, Dünnschichtschrittmessungen, Rauheitsmessdüsen und lasergravierte Trockengasdichtungsnuten liefern.
Rasterkraftmikroskope (AFMs) können 3D-Topographiebilder mit nanoskaliger räumlicher Auflösung aufnehmen. Forscher haben die Fähigkeit von AFMs erweitert, um Muster-Eigenschaftskarten in mechanischen, elektrischen, magnetischen, optischen und thermischen Bereichen zu erstellen. In der Zwischenzeit steht auch die Verbesserung des Bildgebungsdurchsatzes im Fokus der Forschung, um AFMs an neue experimentelle Anforderungen anzupassen. Es gibt im Wesentlichen zwei Anwendungsbereiche für die Hochdurchsatz-AFM-Bildgebung: Die erste Kategorie ist die Hochgeschwindigkeitsbildgebung eines kleinen Bereichs, um dynamische Veränderungen in der Probe aufgrund biologischer oder chem....
1. Probenvorbereitung für die Inspektion im großen Maßstab
Um die Wirksamkeit der AFM-Bildgebung mit großen Reichweiten unter Verwendung paralleler aktiver Cantilever für die Topographie-Bildgebung zu demonstrieren, sind in Abbildung 2 die zusammengefügten Bilder eines Kalibriergitters dargestellt, die von vier parallel betriebenen Cantilevern aufgenommen wurden. Die Silizium-Wafer-Kalibrierstruktur hat 45 μm lange Strukturen mit einer Höhe von 14 nm. Jeder Ausleger deckt eine Fläche von 125 μm x 125 μm ab, was ein gestitchtes Panoramabild v.......
Wie in den repräsentativen Ergebnissen gezeigt, kann ein aktives Cantilever-Array verwendet werden, um mehrere Bilder einer statischen Probe parallel zu erfassen. Dieser skalierbare Aufbau kann den Bildgebungsdurchsatz von großflächigen Proben erheblich verbessern und eignet sich daher für die Inspektion von nanofabrizierten Bauelementen auf Halbleiterwafern. Die Technik ist auch nicht auf künstliche Strukturen beschränkt; Solange die Topographievariation innerhalb einer Gruppe von aktiven Cantilevern nicht zu gro?.......
Die Autoren haben keine Interessenkonflikte.
Die Autoren Ivo W. Rangelow und Thomas Sattel danken dem Bundesministerium für Bildung und Forschung (BMBF) und dem Bundesministerium für Wirtschaft und Klimaschutz (BMWK) für die Unterstützung von Teilen der vorgestellten Methoden durch die Förderung der Projekte FKZ:13N16580 "Aktive Sonden mit Diamantspitze für Quantenmetrologie und Nanofabrikation" im Rahmen der Forschungslinie KMU-innovativ: Photonik und Quantentechnologien und KK5007912DF1 "Conjungate Nano-Positioner-Scanner für schnelle und große messtechnische Aufgaben in der Rasterkraftmikroskopie" im Rahmen der Förderlinie Zentrales Innovationsprogramm Mittelstand (ZIM). Ein Teil der hier vorgestellten Arbei....
Name | Company | Catalog Number | Comments |
Active-Cantilever | nano analytik GmbH | AC-10-2012 | AFM Probe |
E-Beam | EBX-30, INC | 012323-15 | Mask patterning instrument |
Highly Oriented Pyrolytic Graphite – HOPG | TED PELLA, INC | 626-10 | AFM calibration sample |
Mask Sample | Nanda Technologies GmbH | Test substrate | EUV Mask Sample substrate |
NANO-COMPAS-PRO | nano analytik GmbH | 23-2016 | AFM Software |
nanoMetronom 20 | nano analytik GmbH | 1-343-2020 | AFM Instrument |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenWeitere Artikel entdecken
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten