In diesem Artikel wird ein Protokoll zur manuellen Tyramid-Signalverstärkung (TSA) Multiplex-Immunfluoreszenz (mIF) in Kombination mit Bildanalyse und räumlicher Analyse beschrieben. Dieses Protokoll kann mit formalinfixierten Paraffin-eingebetteten (FFPE) Schnitten für die Färbung von zwei bis sechs Antigenen pro Objektträger verwendet werden, je nachdem, welcher Objektträgerscanner im Labor verfügbar ist.
Die Tumormikroumgebung (TME) setzt sich aus einer Vielzahl verschiedener Zelltypen zusammen, wie z.B. zytotoxischen Immunzellen und immunmodulatorischen Zellen. Abhängig von seiner Zusammensetzung und den Wechselwirkungen zwischen Krebszellen und peritumoralen Zellen kann der TME das Fortschreiten der Krebserkrankung beeinflussen. Die Charakterisierung von Tumoren und ihrer komplexen Mikroumgebung könnte das Verständnis von Krebserkrankungen verbessern und Wissenschaftlern und Klinikern helfen, neue Biomarker zu entdecken.
Wir haben kürzlich mehrere Multiplex-Immunfluoreszenz-Panels (mIF) auf Basis der Tyramid-Signalverstärkung (TSA) zur Charakterisierung des TME bei Darmkrebs, Kopf-Hals-Plattenepithelkarzinom, Melanom und Lungenkrebs entwickelt. Sobald die Färbung und das Scannen der entsprechenden Platten abgeschlossen sind, werden die Proben mit einer Bildanalysesoftware analysiert. Die räumliche Position und die Färbung jeder Zelle werden dann aus dieser Quantifizierungssoftware nach R exportiert. Wir haben R-Skripte entwickelt, die es uns ermöglichen, nicht nur die Dichte jedes Zelltyps in mehreren Tumorkompartimenten (z.B. dem Zentrum des Tumors, dem Rand des Tumors und dem Stroma) zu analysieren, sondern auch abstandsbasierte Analysen zwischen verschiedenen Zelltypen durchzuführen.
Dieser spezielle Workflow fügt der klassischen Dichteanalyse, die bereits routinemäßig für mehrere Marker durchgeführt wird, eine räumliche Dimension hinzu. Die mIF-Analyse könnte es Wissenschaftlern ermöglichen, die komplexe Interaktion zwischen Krebszellen und TME besser zu verstehen und neue prädiktive Biomarker für das Ansprechen auf Behandlungen, wie z. B. Immun-Checkpoint-Inhibitoren und zielgerichtete Therapien, zu entdecken.
Mit der Entwicklung zielgerichteter Therapien und Immun-Checkpoint-Inhibitoren ist es von größter Bedeutung geworden, die Wechselwirkungen zwischen Krebszellen und ihrer Tumormikroumgebung besser zu charakterisieren, und dies ist derzeit ein wichtiges Feld der translationalen Forschung. Das TME besteht aus einer Vielzahl verschiedener Zelltypen, mit einem Gleichgewicht aus zytotoxischen Immunzellen, die auf die Krebszellen abzielen, und immunmodulatorischen Zellen, die das Tumorwachstum und die Invasivität begünstigen könnten 1,2,3,4. Die Charakterisierung dieser komplexen Umgebung könnte das Verständnis von Krebserkrankungen verbessern und Wissenschaftlern und Klinikern helfen, neue prädiktive und prognostische Biomarker zu entdecken, um Patienten für eine zukünftige Behandlung besser auswählen zu können 5,6. Galon und sein Team haben zum Beispiel den Immunoscore entwickelt, eine reproduzierbare Scoring-Methode, die als prädiktiver Biomarker verwendet werden kann. Der Immunoscore wird anhand der Dichte der CD3+ und CD8+ T-Zellen am invasiven Rand und im Zentrum des Tumorsberechnet 7,8.
In den letzten Jahrzehnten wurden kommerzielle Lösungen für mIF entwickelt, die jedoch oft teuer sind und für bestimmte Antigenpanels ausgelegt sind. Um den Bedarf an spezifischen Antigen-Panels in der akademischen und translationalen Forschung zu überwinden, haben wir eine kostengünstige Methode zur Durchführung von mIF an FFPE-Tumorschnitten entwickelt, die die Färbung von zwei bis sechs Antigenen ermöglicht, die den Zellkernen zur Gegenfärbung von menschlichen und Mausproben hinzugefügt werden.
Sobald die gesamten Gewebeschnitte gefärbt und mit einem Fluoreszenz-Objektträgerscanner gescannt wurden, können die Proben mit mehreren Bildanalyseprogrammen analysiert werden, die große pyramidale Datensätze unterstützen. Schließlich können die Rohdaten in einer Umgebung für statistische Berechnungen und Grafiken wie der R-Software (v.4.0.2) verwendet werden, um dichte- und räumliche Analysen durchzuführen.
In diesem Manuskript wird ein für die Fünf-Marker-Färbung optimiertes Protokoll sowie Tricks und Tipps zur Optimierung neuer Tafeln vorgestellt. Darüber hinaus werden detaillierte Schritte der Bildanalyse und die für die statistische und räumliche Analyse verwendeten R-Funktionen erläutert.
Alle im vorliegenden Protokoll verwendeten Proben stammen aus einer Studie, die von den lokalen Ethikkommissionen genehmigt und von der zuständigen Behörde genehmigt wurde. Alle Studienteilnehmer gaben eine schriftliche Einverständniserklärung ab. Die Studie ist bei ClinicalTrials.gov registriert (NCT03608046).
1. Multiplex-Immunfluoreszenz
2. Scannen von Objektträgern
3. Bildanalyse
4. Bioinformatik mit R
HINWEIS: Ein R-Skript mit weiteren Details zu den folgenden Schritten ist auf GitHub verfügbar (benidovskaya/Ring: Pipeline for the analysis of multiplex immunofluorescence stainings. [github.com])
Nach diesem Protokoll sollten mehrere Parameter untersucht werden, um sicherzustellen, dass das Gewebe korrekt gefärbt ist. Erstens sollte die TSA-Färbung einen guten Dynamikumfang aufweisen, wenn während des Scanvorgangs niedrige Belichtungszeiten (typischerweise 2-100 ms) verwendet werden. Eine kurze Belichtungszeit impliziert, dass die Amplifikation während der Reaktion mit HRP korrekt durchgeführt wurde. Bei Antigene, die mit dem Sekundärantikörper direkt gekoppelt mit dem Fluorochrom gefärbt wurden, könnte die Expositionszeit viel länger sein, was zu Photobleaching (einer Abnahme der Signalintensität aufgrund einer langen Expositionszeit) führen könnte. Zweitens ist es wichtig zu überprüfen, ob jede Färbung ein hohes SNR aufweist. Ein hohes Hintergrundsignal mit einem niedrigen Antigensignal kann ein Hinweis darauf sein, dass der primäre Antikörper nicht spezifisch genug ist, dass die endogenen Peroxidasen nicht korrekt inaktiviert wurden oder dass ein Schritt des Protokolls nicht adäquat durchgeführt wurde. Drittens ist es je nach Diascanner und den für den Scan verwendeten Filtersätzen möglich, Überlappungen zwischen zwei Farben (z. B. AF555, AF594 und AF647) zu erkennen. Die Wahl der richtigen Filtersätze auf dem Scanner und die richtige Verdünnung der primären Antikörper sind entscheidend, um mögliche Kreuzdetektionen zu vermeiden. Die Qualitätskontrolle besteht aus der Erkennung einzelner gefärbter Zellen für jeden Marker auf der gescannten Datei. Schließlich ist es auch wichtig, für jede Färbecharge eine Positiv- und eine Negativkontrolle hinzuzufügen. Für Immunzellen ist die Mandel eine gute Positivkontrolle. Ein repräsentatives Ergebnis der optimalen Färbung ist in Abbildung 1 dargestellt.
Abbildung 1: Lokal fortgeschrittenes Rektumkarzinom, gefärbt durch Multiplex-Immunfluoreszenz. Abkürzungen: PD-1 = programmiertes Zelltodprotein 1; PD-L1 = Programmierter Todesligand 1; ROR-γ = RAR-verwandter Orphan-Rezeptor-Gamma; CD3 = Cluster der Differenzierung 3; hPanCK = humanes Pan-Zytokeratin. Jede Antigenfärbung wird in Graustufen gescannt, und die in der Abbildung dargestellten Farben sind Pseudofarben. Maßstabsleiste geringe Vergrößerung: 200 μm; Maßstabsleiste hohe Vergrößerung: 100 μm. Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Abbildung 2: Zellkern- und Färbedetektion eines lokal fortgeschrittenen Rektumkarzinoms mit Hilfe einer Bildanalysesoftware. Wenn der Parameter für den Prozentsatz der Vollständigkeit nicht korrekt eingestellt ist, erkennt die Software zwei CD8+-Zellen (grüner Kreis), da sie nahe beieinander liegen, aber nur eine Zelle gefärbt ist. Die Verwendung einer Vollständigkeit von 70 % hilft, diese falsch positive Erkennung zu vermeiden. Grün = hPanCK; Gelb = CD3; Orange = CD8. Maßstabsleiste: 100 μm Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Abbildung 3: Bildanalyse und R-Punktplot-Rekonstitution einer Leberkolorektumkarzinommetastase. Auf der Multiplex-Färbung (links) ist das humane Pan-Zytokeratin gelb, CD3 grün, CD8 hellblau und IDO orange dargestellt. Im Punktdiagramm (rechts) sind humane Pan-Cytokeratin+-Zellen gelb, CD3+CD8−-Zellen grün, CD3+CD8+-Zellen blau und IDO+-Zellen orange dargestellt. Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Abbildung 4: Analyse eines chirurgischen Schnitts eines HNSCC. (A) Ein chirurgischer Schnitt eines HNSCC. Krebszellen sind grün sichtbar. Peritumorale Zellen werden um die Tumorinseln herum sichtbar gemacht (CD3 in gelb und CD8 in lila). (B) Das Zentrum des Tumors (gelb mit schwarzem Rand) wird bioinformatisch durch den k-Nearest-Neighbor-Algorithmus berechnet, basierend auf dem Abstand zwischen den Tumorinseln von einem einzelnen Bereich. Um diesen Bereich herum wird ein invasiver Rand (hellgelb mit grauem Rand) auf einer beliebigen 500-μm-Basis berechnet. (C) Invasive T-Zellen sind mit schwarzen Punkten in der Mitte des Tumors und grauen Punkten am invasiven Rand hervorgehoben. Andere T-Zellen sind in hellgrünen Punkten hervorgehoben. Maßstabsleiste: 1 mm. Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Abbildung 5: Heatmap der Dichte verschiedener Zelltypen von lokal fortgeschrittenen Rektumkarzinombiopsien. Die Heatmap wurde unter Verwendung von unüberwachtem Clustering der Dichten verschiedener Zelltypen aus verschiedenen Multiplex-Panels mit dem ComplexHeatmap-Paket erstellt. Für die Normalisierung wurden Skalierung und Zentrierung verwendet. Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Abbildung 6: Abstände der CD4+- und CD8+-Zellen zu jeder IDO+- oder Tumorzelle. Humane Pan-Zytokeratin+-Zellen sind gelb, CD3+CD8−-Zellen grün, CD3+CD8+-Zellen blau und IDO+-Zellen orange. (A) Der geringste Abstand zwischen Tumorzellen und jeder CD8+ T-Zelle. (B) Barplots der Abstände zwischen IDO+-Zellen und jeder CD8+ T-Zelle (blau) oder CD4+ T-Zelle (grün). (C) Beispiel einer Probe, die mit der G-Kreuz-Funktion analysiert wurde. Die y-Achse zeigt die Wahrscheinlichkeit, dass eine Tumorzelle in einem Radius von 0-200 μm um die Tumorzelle auf einen CD3+-Lymphozyten trifft. Es werden drei Kurven gezeigt; Die theoretische Kurve ist grün gepunktet (Poisson-Verteilung), die korrigierte empirische Kurve mit km-Korrektur schwarz und die korrigierte empirische Kurve mit Randkorrektur rot gepunktet. Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Abbildung 7: Illustration eines Quadratcounts. Die Grenzberechnung und die Quadratanzahl wurden mit dem Paket spatstats durchgeführt. Die am stärksten infiltrierten Quadrate (Hotspots) können für nachgelagerte Statistiken verwendet werden. CD4 ist grün, CD8 rot und Tumorzellen gelb. Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Abbildung 8: Antikörperverdünnung und Optimierung des Antigenabrufs. Chromogener Nachweis von PD-1 unter Verwendung von drei verschiedenen Verdünnungen und zwei verschiedenen Antigen-Rückgewinnungslösungen des primären Antikörpers (Citrat pH 6 und EDTA pH 9). Maßstabsleiste: 50 μm. Bitte klicken Sie hier, um eine größere Version dieser Abbildung zu sehen.
Primärer Antikörper | Verdünnung | Antigen-Retrieval | Sekundärer Antikörper | Fluorochrom | Position |
PD-1 | 1/100 | EDTA (pH 9) | Anti-Kaninchen | AF647 | 1 |
PD-L1 | 1/1000 | EDTA (pH 9) | Anti-Kaninchen | AF488 | 2 |
ROR-γ | 1/200 | EDTA (pH 9) | Anti-Maus | ATT0-425 | 3 |
CD3 | 1/100 | Citrat (pH 6) | Anti-Kaninchen | AF555 | 4 |
hPanCK | 1/50 | Citrat (pH 6) | Anti-Maus gekoppelt mit AF750 | 5 |
Tabelle 1: Beispiel für ein optimiertes Multiplex-Panel. Abkürzungen: PD-1 = programmiertes Zelltodprotein 1; PD-L1 = Programmierter Todesligand 1; ROR-γ = RAR-verwandter Orphan-Rezeptor-Gamma; CD3 = Cluster der Differenzierung 3; hPanCK = humanes Pan-Zytokeratin; AF = AlexaFluor; EDTA = Ethylendiamintetraessigsäure. CD3 wird zum Nachweis von T-Lymphozyten verwendet; PD-1 wird verwendet, um erschöpfte Lymphozyten zu erkennen; ROR-γ wird verwendet, um Th-17 zu detektieren; und hPanCK wird zum Nachweis von Tumorzellen eingesetzt. Die Positionsspalte gibt die Reihenfolge an, in der der sequentielle Multiplex ausgeführt werden muss.
Die wichtigsten Parameter, die zur Optimierung der Multiplex-Färbung berücksichtigt werden müssen, sind die Verdünnung, die Spezifität und die Antigengewinnung, die für jeden Primärantikörper verwendet werden. Vor Beginn eines Multiplex-Protokolls muss die optimale Verdünnung und optimale Epitopgewinnung (pH 6 oder pH 9) jedes Primärantikörpers mittels chromogener Färbung (DAB) getestet werden. Wir empfehlen, drei Verdünnungen für jeden Antigen-Rückgewinnungspuffer zu testen: die Verdünnung, die normalerweise von der Marke angegeben wird, die den Antikörper kommerzialisiert, die gleiche Verdünnung zweifach geteilt und die gleiche Verdünnung zweifach multipliziert (Abbildung 8). Die Wahl der richtigen Verdünnung ist ein sehr wichtiger Schritt, um die Spezifität der Antikörper zu überprüfen und das Signal-Rausch-Verhältnis (SNR) der Färbung zu optimieren. Nach der Wahl der richtigen Verdünnung im DAB sollte die gleiche Verdünnung für jeden Primärantikörper mit Uniplex TSA getestet werden. Sobald die Verdünnung und der Epitop-Rückgewinnungspuffer für jede Antigenfärbung ausgewählt sind, ist es auch wichtig, die Sequenz des Multiplex korrekt einzustellen. Insbesondere sind einige Antigene an der ersten Position besser gefärbt und andere an der letzten Position. Wir empfehlen, die Multiplex-Markierung mit allen möglichen Ordnungspermutationen zu testen, um auszuwählen, welche Antigenfärbung zuerst, an zweiter Stelle usw. erfolgen soll. Dies ist auch ein sehr wichtiger Schritt, da einige fragile Antigene nach mehreren Runden der Epitopgewinnung abgebaut werden können und einige Antigene nach mehreren Runden der Epitopgewinnung besser gefärbt sind. Zum Beispiel ist das SNR in der letzten Position für CD3 und in der ersten Position für die PD-1-Färbung immer höher. Darüber hinaus kann die Färbung mehrerer kolokalisierter Antigene durch einen Umbrella-Effekt (die Sättigung von Tyramid-reaktiven Zentren) behindert werden. Dies kann durch eine Verringerung der Tyramidkonzentration abgeschwächt werden. Wenn die Expression eines Antigens durch die Expression eines anderen Antigens bedingt ist (CD8 kommt nur auf CD3-exprimierenden T-Zellen vor), empfehlen wir, das Antigen mit der breitesten Expression (in diesem Fall CD3) nach dem anderen zu färben. Schließlich ist auch die Auswahl des richtigen Fluorochroms für jede Antigenfärbung entsprechend den Besonderheiten des Scanners ein wichtiger Schritt, um Kreuzdetektionen zu vermeiden.
Die Hauptvorteile dieser Technik sind die Verstärkung und das erzielte Signal-Rausch-Verhältnis. Diese Technik hat jedoch eine Einschränkung, nämlich dass die Färbung sequenziell erfolgt und die Fluorochrome kovalent an das Gewebe gebunden sind. Nichtsdestotrotz ist es nach Durchführung aller Verstärkerrunden des Tyramid-Signals auch möglich, eine letzte Färbung mit einem sekundären Antikörper hinzuzufügen, der direkt mit einem Fluorochrom gekoppelt ist (kein TSA). In einigen Panels haben wir diese Methode verwendet, um Färbungen im 750-Kanal hinzuzufügen. Dies war notwendig, da zu diesem Zeitpunkt noch kein Tyramid-AF750 im Handel erhältlich war. Es ist zu beachten, dass die Expositionszeit (während des Scans) des mit AF750 gefärbten Antigens viel länger ist als bei den anderen mit TSA gefärbten Antigene. In diesem Fall empfehlen wir, ein stark exprimiertes Protein wie Zytokeratin zu färben oder die Konzentration des primären Antikörpers zu erhöhen. Auf diese Weise ist es möglich, je nach Fluoreszenzscanner maximal fünf bis sechs Antigene pro Objektträger in einer Charge zu färben.
Im Gegensatz dazu verwenden mehrere kommerziell erhältliche Techniken die serielle Färbung mit mehreren Runden der Färbung, des Scannens und des Striptens oder des Photobleachings, um die Anzahl der Antigene zu verbessern, die auf einem einzigen Gewebeschnitt gefärbt werden können. Diese Techniken sind jedoch oft zeitaufwändig, teuer, haben keine Signalverstärkung, erfordern fortgeschrittene Rechenschritte, um die seriellen Scans korrekt zusammenzuführen, und können unserer Erfahrung nach aufgrund der zahlreichen Verfahrensschritte irreversible Gewebeschäden induzieren. Nichtsdestotrotz wurde berichtet, dass mit dieser Methode bis zu 30 Antigene auf einem einzigen Gewebe gefärbt werden konnten14.
Zusammenfassend lässt sich sagen, dass unsere Methode eine robuste, reproduzierbare, einfach anzuwendende und kostengünstige Immunhistofluoreszenztechnik ist, die in jedem Labor mit einem Fluoreszenz-Objektträgerscanner eingesetzt werden kann. Jeder kommerzialisierte Primärantikörper, der für IHC geeignet ist, kann verwendet werden, und die Panels sind nicht spezifisch für kommerzielle Kits. Die Bildanalyse kann mit verschiedenen Programmen durchgeführt werden, einschließlich Open-Source-Programmen wie QuPath und R. Wir glauben jedoch, dass diese Methode in Zukunft sogar für große Antigen-Panels verbessert werden könnte, da sie die serielle Färbung/das Scannen desselben Objektträgers mit verschiedenen Antigen-Panels und mit dem Vorteil der Signalverstärkung ermöglicht.
Die Autoren haben keine Interessenkonflikte zu erklären.
Die Autoren bedanken sich bei Dr. Derouane F. für ihre Hilfe und Unterstützung. Nicolas Huyghe ist wissenschaftlicher Mitarbeiter, der durch ein Stipendium des belgischen Nationalen Fonds für wissenschaftliche Forschung (Télévie/FNRS 7460918F) gefördert wird.
Name | Company | Catalog Number | Comments |
anti-CD3 primary antibody | Abcam | ab16669 | rabbit monocolonal |
anti-CD8 primary antibody | DAKO | M710301 | mouse monoclonal |
anti-hPanCK primary antibody | DAKO | M3515 | mouse monoclonal |
anti-PD-1 primary antibody | Cell Signalling | D4W2J | rabbit monocolonal |
anti-PD-L1 primary antibody | Cell Signalling | 13684 | rabbit monocolonal |
anti-RORC primary antibody | Sigma | MABF81 | mouse monoclonal |
ATTO-425 | ATTOtec | ||
Axioscan Z1 | Zeiss | Light source: Colibri 7 (385, 430, 475, 555, 590, 630, 735 nm) Filtersets: Excitation 379/34 – beam splitter 409 – emission 440/40; Excitation 438/24 – beam splitter 458 – emission 483/32; Excitation 490/20 – beam splitter 505 – emission 525/20; Excitation 546/10 – beam splitter 556 – emission 572/23; Excitation 592/21 – beam splitter 610 – emission 630/30; Excitation 635/18 – beam splitter 652 – emission 680/42; Excitation 735/40 – beam splitter QBS 405 + 493 + 611 + 762 - emission QBP 425/30 + 524/51 + 634/38 + 785/38; Objective: Plan-Apochromat 20x/0.8; Camera : Orca Flash 4.0 V3 | |
Borosilicate Cover Glass | VWR | 631-0146 | |
Envision+ anti-mouse | DAKO | K4001 | |
Envision+ anti-rabbit | DAKO | K4003 | |
Fluorescence mounting medium | DAKO | S3023 | |
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 750 | ThermoFischer | A-21037 | |
HALO software | Indicalabs | ||
Hoescht | Sigma | 14533 | |
Superfrost plus microscope slides | Fisherscientific/Epredia | 10149870 | |
Tyramide-AF488 | ThermoFischer | B40953 | |
Tyramide-AF555 | ThermoFischer | B04955 | |
Tyramide-AF647 | ThermoFischer | B04958 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenWeitere Artikel entdecken
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten