Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Dieses Protokoll demonstriert die Laserzellablation einzelner Neuronen in intakten Drosophila-Larven . Die Methode ermöglicht es, die Wirkung der Verringerung der Konkurrenz zwischen Neuronen im sich entwickelnden Nervensystem zu untersuchen.

Zusammenfassung

Das Protokoll beschreibt die Ablation einzelner Neuronen mit einem 2-Photonen-Lasersystem im Zentralnervensystem (ZNS) von intakten Larven von Drosophila melanogaster . Mit dieser nicht-invasiven Methode kann das sich entwickelnde Nervensystem zellspezifisch manipuliert werden. Die Störung der Entwicklung einzelner Neuronen in einem Netzwerk kann genutzt werden, um zu untersuchen, wie das Nervensystem den Verlust des synaptischen Inputs kompensieren kann. Einzelne Neuronen wurden im Riesenfasersystem von Drosophila spezifisch abgetragen, wobei der Schwerpunkt auf zwei Neuronen lag: der präsynaptischen Riesenfaser (GF) und dem postsynaptischen tergotrochanteralen Motoneuron (TTMn). Das GF synapsiert mit dem ipsilateralen TTMn, das für die Fluchtreaktion entscheidend ist. Die Ablation eines der GFs im 3. Instar-Gehirn, kurz nachdem das GF mit dem axonalen Wachstum begonnen hat, entfernt die Zelle dauerhaft während der Entwicklung des ZNS. Das verbleibende GF reagiert mit dem fehlenden Nachbarn und bildet ein ektopisches synaptisches Terminal zum kontralateralen TTMn. Dieses atypische, bilateral symmetrische Terminal innerviert beide TTMns, wie durch Farbstoffkopplung nachgewiesen wird, und steuert beide Motoneuronen, wie elektrophysiologische Assays zeigen. Zusammenfassend lässt sich sagen, dass die Ablation eines einzelnen Interneurons einen synaptischen Wettbewerb zwischen einem bilateralen Neuronenpaar zeigt, das den Verlust eines Neurons kompensieren und die normalen Reaktionen auf den Escape-Kreislauf wiederherstellen kann.

Einleitung

Die Laserablation ist ein bevorzugtes Werkzeug zum Sezieren neuronaler Schaltkreise in einer Vielzahl von Organismen. Es wurde in genetischen Modellsystemen wie Würmern und Fliegen entwickelt und im gesamten Tierreich eingesetzt, um die Struktur, Funktion und Entwicklung des Nervensystems zu untersuchen 1,2,3. Hier wurde die Einzelneuronenablation eingesetzt, um zu untersuchen, wie Neuronen während des Schaltkreisaufbaus in Drosophila interagieren. Das Fluchtsystem der Fliege ist ein beliebter Schaltkreis für die Analyse, da es die größten Neuronen und die größten Sy....

Protokoll

Alle für das Protokoll verwendeten Tiere gehörten der Art Drosophila melanogaster an. Es gibt keine ethischen Probleme im Zusammenhang mit der Verwendung dieser Art. Eine ethische Freigabe war für die Durchführung dieser Arbeit nicht erforderlich. Die Einzelheiten zu den Drosophila-Arten , den Reagenzien und der Ausrüstung, die in der Studie verwendet wurden, sind in der Materialtabelle aufgeführt.

1. Drosophila züchten und das richtige Larvenstadium auswählen

  1. Wählen Sie eine Gal4-Treiberlinie, die die Expression in den Zellen steuert, die abgetragen werden sollen, und k....

Repräsentative Ergebnisse

Mit dieser Methode kann die Entwicklung spezifischer neuronaler Netzwerke im Nervensystem von Drosophila manipuliert werden. Die primäre Forschungsfrage dabei war die Bildung synaptischer Verbindungen. Die Entfernung des präsynaptischen GF oder des postsynaptischen TTMn ermöglichte die Untersuchung der reaktiven Synaptogenese an dieser zentralen Synapse und der molekularen Mechanismen, die für die synaptische Funktion und Entwicklung entscheidend sind. Wie im Protokoll beschrieben, wurde eine Laserzellenabla.......

Diskussion

Die Zellablation mit einem 2-Photonen-Mikroskop erwies sich als sehr erfolgreiche Methode, um die Entwicklung neuronaler Schaltkreise in Drosophila zu manipulieren. Da diese Methode nicht-invasiv ist, verursacht sie nur minimalen Schaden für das Tier. Die Daten unterstützen die Nützlichkeit dieser zellspezifischen Manipulation bekannter Schaltkreise.

Entscheidend für den Erfolg der Ablation war die Auswahl des am besten geeigneten Gal4-Treibers. Da das GFS gut untersucht ist, wurd.......

Offenlegungen

Die Autoren haben nichts offenzulegen.

Danksagungen

Die Experimente am 2-Photonen-Mikroskop wurden im Advanced Cell Imaging Core des Stiles-Nicholson Brain Institute der FAU durchgeführt. Wir danken der Jupiter Life Science Initiative für die finanzielle Unterstützung.

....

Materialien

NameCompanyCatalog NumberComments
Alexa Fluor 488 AffiniPure Goat Anti-Rabbit IgG (H+L)Jaxkson ImmunoResearch111-545-003
Anti-green fluorescent protein, rabbitFisher ScientificA111221:500 concentration
Apo LWD 25x/1.10W ObjectiveNikonMRD77220water immersion long working distance
Bovine Serum Albumin (BSA)SigmaB4287-25G
Chameleon Ti:Sapphire Vision II LaserCoherent
Cotton BallGenesee Scientific51-101
Dextra, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby)Fisher ScientificD1817
Drosophila salinerecipe from Gu and O'Dowd, 2006
Ethyl EtherFisher ScientificE134-1Danger, Flammable liquid
Fly food B (Bloomington recipe)LabExpress7001-NV
Methyl salicylateFisher ScientificO3695-500
Microcentrifuge tube 1.5 mLEppendorf22363204
Microscope cover-slip 18x18 #1.5Fisher Scientific12-541A
Neurobiotin TracerVector LaboratoriesSP-1120
Nikon A1R multi-photon microscopeNikonon an upright FN1 microsope stand
NIS Elements Advanced ResearchNikonAcquisition and data analysis software
Paraformaldehyde (PFA)Fisher ScientificT353-500
PBS (Phosphate Buffered Salin)Fisher BioReagentsBP2944-100Tablets
R91H05-Gal4Bloomington Drosophila Stock Center40594
shakB(lethal)-GAl4Bloomington Drosophila Stock Center51633
Superfrost microscope glass slideFisher Scientific12-550-143
Triton X-100Fisher Scientific422355000detergent solution
UAS-10xGFPBloomington Drosophila Stock Center32185

Referenzen

  1. Chung, S. H., Mazur, E. Femtosecond laser ablation of neurons in C. elegans for behavioral studies. Appl Phys A Mater Sci Process. 96 (2), 335-341 (2009).
  2. Bower, D. V., et al. A....

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Diesen Monat in JoVEAusgabe 209

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten