Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a detailed protocol for assessing the immunomodulatory potential of implant surfaces in vitro, aiming to improve the reliability and reproducibility of current protocols and promoting further research. Secretory cytokine profiles, mRNA expression, and cell surface markers were monitored using blood monocyte-derived macrophages to investigate macrophage polarization cultivated on titanium.

Abstract

Foreign body reaction (FBR), an immune-mediated complex healing process, plays a crucial role in integrating implants into the body. Macrophages, as the first line of immune system interaction with implant surfaces, play a bidirectional role in modulating the inflammation-regeneration balance. For a deep understanding and the evaluation of the reactions between implant materials and immune responses, reliable in vitro methods and protocols are pivotal. Among different in vitro models, primary monocyte-derived macrophages (MDMs) present an excellent model for investigating macrophage-implant interactions. We have implemented an experimental protocol to evaluate the polarization of MDMs into M1 (classically activated) and M2 (alternatively activated) macrophages on implant surfaces. We isolated blood monocytes from healthy donors and differentiated them into macrophages using macrophage colony-stimulating factor (M-CSF). Differentiated macrophages were cultured on implant surfaces and polarized into M1 and M2 subtypes. M1 polarization was achieved in the presence of interferon (IFN)-γ and lipopolysaccharide (LPS), while M2 polarization was performed in a medium containing interleukin (IL)-4 and IL-13. We evaluated macrophage phenotypes by Enzyme-linked Immunosorbent Assay (ELISA), confocal laser scanning microscopy (CLSM), and quantitative real-time PCR (qRT-PCR) based on panels of secreted cytokines, cell surface markers, and expressed genes. The extracted RNA was transformed into complementary DNA (cDNA), and qRT-PCR was used to quantify mRNA related to M1 and M2 macrophages. Accordingly, M1 macrophages have been characterized by higher expression of proinflammatory Tumor necrosis factor (TNF-α) cytokine and CCR7 surface marker compared to M2 macrophages, which exhibited higher levels of CD209 and CCL13. Consequently, CCR7 and CD209 were identified as specific and reliable markers of M1 and M2 macrophage subtypes by immunostaining and visualizing by CLSM. Further confirmation was achieved by ELISA detecting elevated TNF-ɑ level in M1 and increased CCL13 in M2 cells. The proposed markers and experimental setup can be used effectively to assess the immunomodulatory potential of implants.

Introduction

Implantable biomaterials have become a conventional solution for various human diseases and play a great role in biomedical research, including tissue engineering, drug delivery systems, and implants1,2. There is a wide range of implants made from various materials with different structures and functionalities, such as hip prostheses, stents, meshes, heart valves, or dental implants. Upon implantation, the tissue-implant contact provokes an immune response, followed by resolution, tissue remodeling, and homeostasis. These processes are influenced by the physical, chemical, and bioactive characteristics of the ....

Protocol

Human peripheral blood was obtained from healthy blood donors in accordance with the protocol approved by the Ethics Committee of the medical faculty at the University of Tübingen (ethical approval: 286/2021 BO). Human PBMCs were isolated using Density Gradient Centrifugation, as previously described16. The following protocol is outlined for PBMCs isolated from 24 mL of blood. A schematic representation of the protocol is shown in Figure 1.

Representative Results

The results of this study demonstrate successful differentiation and polarization of MDMs on titanium surfaces, followed by characterization of M1 or M2 polarized macrophages. In the first step, we characterized polarized MDMs using CLSM. Based on our preliminary studies, CD209 and CCR7 were used as specific markers to differentiate M1 from M2 polarized MDMs. As shown in Figure 2A,B, MDMs polarized successfully into M1 and M2 macrophages. On the titanium surface, CCR7 was ex.......

Discussion

A thorough understanding of macrophage behavior is essential for comprehending the immunomodulatory properties of implantable materials. Several studies have reported heterogeneous markers, a variety of cell models, and protocols for characterizing macrophage polarization in vitro17,18,19,20. To improve reproducibility, reliability, and comparability of experimental results, standardiz.......

Acknowledgements

The discs were kindly provided by Medentis Medical, Bad-Neuenahr-Ahrweiler, Germany. The authors acknowledge the support from the Department of Oral and Maxillofacial Surgery (University Hospital Tuebingen).

....

Materials

NameCompanyCatalog NumberComments
24-well plate, not-treatedCorning Incorporated (Kennebunk, USA) 144530
Absorbance reader Infinite F50 TECAN Austria GmbH (Grödig, Austria)TCAT91000001
Accutase in DPBS, 0.5 mM EDTAEMD Millipore Corp. (Burlington, USA)SCR005
Anti-Fade Fluorescence Mounting Medium -Aqueous, Fluoroshieldabcam (Cambridge, UK)ab104135
Bio-Rad MJ Research PTC-200 Peltier Thermal CyclerBio-Rad / MJ Research7212
Bovine serum albumin (BSA)VWR International bvba (Leuven, Belgium)422361V
Centrifuge 5804 REppendorf SE (Hamburg, Germany)5804 R
DC-SIGN (D7F5C) XP Rabbit mAbCell Signaling Technology13193
Dimethyl sulfoxideSigma Aldrich Co. (St.Louis, MO, USA)D2438-5X10ML
DRAQ5 Staining SolutionMilteny Biotec (Bergisch Gladbach, Germany)130-117-344
Ethanol ≥99.8% for molecularbiologyCarl Roth GmbH + CO. KG (Karlsruhe, Germany)1HPH.1
Goat Anti-Mouse IgG (H&L) Highly Cross-Adsorbed
Secondary Antibody, Alexa Fluor Plus 488
InvitrogenA32723TR
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Cyanine3InvitrogenA10520
GraphPad PrismGraphPadVersion  9.4.1
Human CCR7 AntibodyR&D SystemsMAB197
Human IFN-gamma RecombinantInvitrogen (Rockford, USA)RIFNG100
Human IL-13Milteny Biotec (Bergisch Gladbach, Germany)5230901032
Human IL-4Milteny Biotec (Bergisch Gladbach, Germany)130-095-373
Human M-CSFPeprotech (Cranbury, USA)300-25
Leica TCS SP5Leica Microsystems CMS GmbH (Mannheim, Germany)https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp5/
Lipopolysaccharides from EscherichiaSigma Aldrich Co. (Missouri, USA)L4391-1MG
Luna Universal qPCR Master Mix New England BiolabsNEB #M3003
LunaScript RT SuperMix KitNew England BiolabsE3010L
Lymphocyte Separation Medium 1077PromoCell (Heidelberg, Germany)C-44010
MCP-4/CCL13 Human ELISA KitInvitrogenEHCCL13
MicroAmp Fast 96-Well Reaction Plate (0.1 mL)Applied Biosystems (Waltham, USA)4346907
MicroAmp Optical Adhesive FilmLife Technologies Corporation (Carlsbad, USA)4311971
MicroAmp Splash Free 96-Well BaseApplied Biosystems (Waltham, USA)4312063
Microlitercentrifuge CD-3124RPhoenix Instrument (Germany)9013111121
Microscope Cover Glasses, 10 mmCarl Roth GmbH, Karlsruhe, Germany4HX4.1
Monocyte Attachment MediumPromoCell (Heidelberg, Germany)C-28051
Multiply-Pro Gefäß 0.5 mL, PPSarstedt AG & CO (Nümbrecht, Germany)7,27,35,100
Nanodrop OneThermo Scientific (USA)ND-ONE-W
QuantStudio 3 SystemLife Technologies GmbH (St. Leon-Rot, Germany)A28567
RNeasy Micro KitQiagen74007
RPMI 1640, 1x, with L-glutamineMediatech, Inc. (Manassas, USA)10-040-CV
Sterile bench, LaminarAir HB 2472 Heraeus instruments (Hanau, Germany)51012197
Tissue Culture Coverslips 13 mm (Plastic)Sarstedt Inc. (Newton, USA)83,18,40,002
Titanium machinied discs 12 cm Medentis Medical (Bad-Neuenahr-Ahrweiler, Germany)N/A
TNF alpha Human ELISA KitInvitrogenKHC3011
Trypan blue solution 0.4%Carl Roth GmbH + Co. KG (Karlsruhe, Germany)1680.1

References

  1. Othman, Z., Pastor, B. C., van Rijt, S., Habibovic, P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials. 167, 191-204 (2018).
  2. Ikada, Y. Challenges in tissue engineering.

Explore More Articles

PolarizationCharacterizationM1 MacrophagesM2 MacrophagesHuman Monocyte derived MacrophagesForeign Body ReactionImplant SurfacesMacrophage Colony stimulating FactorCytokinesEnzyme linked Immunosorbent AssayConfocal Laser Scanning MicroscopyQuantitative Real time PCRTumor Necrosis FactorCCR7CD209Immunostaining

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved