Iniciar sesión

Molecules that possess multiple chiral centers can afford a large number of stereoisomers. For instance, while some molecules like 2-butanol have one chiral center, defined as a tetrahedral carbon atom with four different substituents attached, several molecules like butane-2,3-diol have multiple chiral centers. A simple formula to predict the number of stereoisomers possible for a molecule with n chiral centers is 2n. However, there can be a lower number where some of the stereoisomers are superposable mirror images of each other and, accordingly, represent the same molecule. For instance, butane-2,3-diol with its two chiral centers can have 22, i.e., four possible configurations. While RR and SS are mirror images of each other, they are not superposable and hence are chiral. However, RS and SR are also mirror images of each other but are superposable and the same molecule. Therefore, butane-2,3-diol has only three distinct stereoisomers of the potential four.

In this context, the understanding of a chiral center vis-à-vis a chiral molecule is vital. This is fundamentally dependent on molecular symmetry – be it a plane or center of symmetry or an improper axis of rotational symmetry. Molecules with a plane of symmetry or a center of symmetry possess superposable mirror images and are hence achiral. However, when both are absent, the molecule is still achiral if the object's rotation about an axis creates a mirror image of the molecule in a plane perpendicular to the axis. Such an axis is known as an improper axis of rotation.

A single chiral center precludes the possibility of any symmetry in the molecule, and hence molecules with only one chiral center are always chiral. Asserting the chirality of a molecule with multiple chiral centers can only be done after evaluating the symmetry of the molecular structure. Molecules with multiple chiral centers and an achiral configuration are referred to as meso compounds. A famous example is the meso-tartaric acid shown in Figure 1(c).

Figure1

Figure 1: Fischer projection skeletal structures of tartaric acid enantiomers - (a) ʟ-tartaric acid, (b) ᴅ-tartaric acid, and (c) meso-tartaric acid

Tags
Multiple Chiral CentersStereoisomersTetrahedral Carbon AtomSubstituentsSuperposable Mirror ImagesConfigurationsDistinct StereoisomersChiral CenterChiral MoleculeMolecular SymmetryPlane Of SymmetryCenter Of SymmetryImproper Axis Of Rotational SymmetryAchiral

Del capítulo 4:

article

Now Playing

4.6 : Molecules with Multiple Chiral Centers

Estereoisomería

10.9K Vistas

article

4.1 : Quiralidad

Estereoisomería

21.6K Vistas

article

4.2 : Isomería

Estereoisomería

17.3K Vistas

article

4.3 : Estereoisomería

Estereoisomería

12.1K Vistas

article

4.4 : Nombrando a los Enantiomeros

Estereoisomería

19.4K Vistas

article

4.5 : Propiedades de los Enantiomeros y Actividad Óptica

Estereoisomería

16.3K Vistas

article

4.7 : Proyecciones de Fischer

Estereoisomería

12.6K Vistas

article

4.8 : Mezclas Racémicas y la Resolución de Enantiomeros

Estereoisomería

17.7K Vistas

article

4.9 : Estereoisomería de los compuestos cíclicos

Estereoisomería

8.5K Vistas

article

4.10 : Quiralidad en el Nitrógeno, Fósforo y Azúfre

Estereoisomería

5.5K Vistas

article

4.11 : Proquiralidad

Estereoisomería

3.7K Vistas

article

4.12 : La quiralidad en la naturaleza

Estereoisomería

11.8K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados