JoVE Logo

Iniciar sesión

13.23 : Ley de Poiseuille y el número de Reynolds

Any fluid in a horizontal tube can flow due to pressure differences—fluid flows from high to low pressure. The flow rate (Q) is the ratio of pressure difference and resistance through a horizontal tube. The greater the pressure difference, the higher the flow rate. The flow resistance is expressed as:

Static equilibrium, ΣF=0, ΣM=0, force diagram, mechanical balance illustration, educational physics.

When combined with the flow rate (Q), this relation gives Poiseuille's law for the laminar flow of an incompressible fluid in a tube.

Free electron laser diagram illustrating optical amplification process and light emission pathways.

All factors that affect the flow rate, except pressure, are included in resistance. Resistance depends on the dimensions of the tube and the viscosity of the fluid. Resistance is directly proportional to the length of the tube and inversely proportional to the fourth power of the radius of the tube.

In the case of a non-viscous fluid, the fluid flow is frictionless, and the resistance to flow is zero. This results in the motion of all the layers with the same velocity. In contrast, resistance to fluid flow in viscous fluids is non-zero. In such cases, the speed is greatest for the midstream and decreases towards the edge of the tube. We can see the effect in a Bunsen burner flame.

Flow can be considered to be laminar or turbulent as classified by the Reynolds number. If the Reynolds number is below 2,000, the flow is laminar; if it is greater than 3,000, the flow is turbulent. Flow is considered to be unstable and may show chaotic behavior if the Reynolds number falls between 2,000 and 3,000. Unstable flow indicates that it is initially laminar, but due to obstructions or surface roughness, the flow can become turbulent, and it may oscillate randomly between being laminar and turbulent. Here, a tiny variation in one factor can have an exaggerated (or nonlinear) effect on a system, thus showing chaotic behavior.

This text is adapted from Openstax, University Physics Volume 1, Section 14.7: Viscosity and Turbulence.

Tags

Poiseuille s LawReynolds NumberFluid FlowPressure DifferenceFlow RateResistanceLaminar FlowIncompressible FluidViscosityTurbulent FlowFlow StabilityChaotic BehaviorNon viscous FluidFrictionless FlowBunsen Burner Flame

Del capítulo 13:

article

Now Playing

13.23 : Ley de Poiseuille y el número de Reynolds

Mecánica de fluidos

6.3K Vistas

article

13.1 : Características de los fluidos

Mecánica de fluidos

3.7K Vistas

article

13.2 : Densidad

Mecánica de fluidos

14.6K Vistas

article

13.3 : Presión de fluidos

Mecánica de fluidos

15.4K Vistas

article

13.4 : Variación de la presión atmosférica

Mecánica de fluidos

2.0K Vistas

article

13.5 : Principio de Pascal

Mecánica de fluidos

8.0K Vistas

article

13.6 : Aplicación del principio de Pascal

Mecánica de fluidos

8.0K Vistas

article

13.7 : Manómetros

Mecánica de fluidos

3.0K Vistas

article

13.8 : Flotabilidad

Mecánica de fluidos

9.2K Vistas

article

13.9 : Principio de Arquímedes

Mecánica de fluidos

7.7K Vistas

article

13.10 : Densidad y el principio de Arquímedes

Mecánica de fluidos

6.5K Vistas

article

13.11 : Fluidos aceleradores

Mecánica de fluidos

998 Vistas

article

13.12 : Tensión superficial y energía superficial

Mecánica de fluidos

1.3K Vistas

article

13.13 : Exceso de presión dentro de una gota y una burbuja

Mecánica de fluidos

1.6K Vistas

article

13.14 : Ángulo de contacto

Mecánica de fluidos

11.6K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados