The inverse z-transform is a crucial technique for converting a function from its z-domain representation back to the time domain. One effective method for finding the inverse z-transform is the Partial Fraction Method, which involves decomposing a function into simpler fractions with distinct coefficients. These fractions correspond to known z-transform pairs, facilitating the inverse transformation process.

To begin the process, the poles of the function are identified and the function is expressed in terms of these poles. Each pole contributes a term to the partial fraction decomposition. The coefficients for each term in the decomposition are determined by evaluating the residues at each pole.

Once the coefficients are determined, the function is reassembled in its decomposed form, making it simpler to work with. The inverse z-transform is then applied to each fractional term separately. The result combines delta functions, exponential sequences, and step functions representing the original time-domain sequence.

Using the Partial Fraction Method, the inverse z-transform of complex functions becomes more manageable, allowing for accurate conversion back to the time domain. This method ensures that each component of the decomposed function is correctly transformed, resulting in a precise reconstruction of the original sequence.

Tags
Inverse Z transformPartial Fraction ExpansionZ domainTime DomainPolesPartial Fraction DecompositionResiduesDelta FunctionsExponential SequencesStep FunctionsTime domain SequenceTransformation Process

Del capítulo 19:

article

Now Playing

19.5 : Inverse z-Transform by Partial Fraction Expansion

z-Transform

163 Vistas

article

19.1 : Definición de transformación z

z-Transform

149 Vistas

article

19.2 : Región de Convergencia

z-Transform

236 Vistas

article

19.3 : Propiedades de la transformada z I

z-Transform

89 Vistas

article

19.4 : Propiedades de la transformada z II

z-Transform

71 Vistas

article

19.6 : Solución de ecuaciones diferenciales usando z-Transform

z-Transform

133 Vistas

article

19.7 : Relación de DFT con la transformada z

z-Transform

241 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados