Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
De alto rendimiento selectiva 2 'acilación hidroxilo analizados por extensión del cebador (FORMA) utiliza un software de predicción de estructura secundaria de producto químico nuevo sondeo de la tecnología, la transcripción inversa, electroforesis capilar y para determinar las estructuras de ARN de varios cientos a varios miles de nucleótidos en una sola resolución de nucleótidos.
Comprender la función del ARN que participan en los procesos biológicos exige un conocimiento profundo de la estructura del ARN. Con este fin, la metodología denominada "acilación hidroxilo de alto rendimiento 2 selectivo 'analizado mediante extensión de cebador", o forma, permite la predicción de la estructura secundaria de ARN con una sola resolución de nucleótidos. Este enfoque utiliza agentes químicos de sondeo que preferentemente acilato de regiones de cadena sencilla o flexible de ARN en solución acuosa. Sitios de modificación química se detectan mediante transcripción inversa del ARN modificado, y los productos de esta reacción son fraccionados por electroforesis capilar automatizado (CE). Dado que la transcriptasa inversa se detiene en esos nucleótidos de ARN modificados por los reactivos de la forma, la biblioteca de cDNA resultante asigna indirectamente estos ribonucleótidos que son de cadena sencilla en el contexto de los ARN plegadas. El uso de software ShapeFinder, los producidos por electroferogramas automatizado CE son procesados y convertidos en nutablas de reactividad cleotide que se convierten ellos mismos en las limitaciones del pseudo-energía utilizadas en el RNAStructure (v5.3) algoritmo de predicción. Las estructuras de ARN de dos dimensiones obtenidos por combinación de una forma sondeo con ARN in silico de predicción de estructura secundaria se han encontrado para ser mucho más precisa que la estructuras obtenidas usando cualquier método solo.
Para comprender las funciones de los ARN catalíticos y no codificantes implicadas en la regulación del corte y empalme, traducción, replicación del virus y el cáncer, se requiere un conocimiento detallado de la estructura del ARN 1,2. Desafortunadamente, la predicción exacta de ARN plegado presenta un reto formidable. Agentes de sondeo clásicas sufren de muchas desventajas tales como la toxicidad, la cobertura incompleta de nucleótidos y / o un caudal limitado a 100-150 nucleótidos por experimento. Algoritmos de predicción de estructura secundaria sin ayuda son igualmente desventajoso, debido a las inexactitudes que resultan de su incapacidad para distinguir efectivamente entre estructuras energéticamente similares. Grandes de ARN, en particular, también son a menudo refractario a los métodos de determinación de la estructura 3D, tales como la cristalografía de rayos X y resonancia magnética nuclear (RMN), debido a su flexibilidad conformacional y grandes cantidades de muestras muy puras requeridas para estas técnicas.
HFORMA igh rendimiento resuelve muchos de estos problemas al proporcionar un enfoque eficaz, sencilla de sondeo de las grandes estructuras de ARN a una resolución de un solo nucleótido. Por otra parte, los reactivos utilizados para la forma son seguros, fáciles de manejar y, en contraste con la mayoría de otros productos químicos de sondeo reactivos, reaccionan con los cuatro ribonucleótidos. Estos reactivos también pueden penetrar en las membranas celulares, por lo que es posible para sondear RNAs en su contexto in vivo (s) 3. Originalmente desarrollado en las Semanas de laboratorio 4, la forma ha sido utilizado para analizar una amplia variedad de ARN, el ejemplo más notable es la determinación de la estructura secundaria completa del ~ 9 kb VIH-1 ARN del genoma 5. Otros logros notables incluyen SHAPE utilizando elucidación de las estructuras de los viroides infecciosas 6, ARNs no codificantes largas humanos 7, ribosomas de levadura 8 y 9 riboswitches así como para identificar los sitios de unión de proteínas de virión asociada a VIH-1 RNA 3. While las variaciones originales y de alto rendimiento del protocolo SHAPE se han publicado en otros lugares 10 a 12, el presente trabajo ofrece una descripción detallada de la determinación de la estructura secundaria del ARN por la forma de alto rendimiento utilizando oligonucleótidos fluorescentes, la Beckman Coulter CEQ 8000 Genetic Analyzer y software SHAPEfinder y RNAStructure (v5.3). Detalles técnicos inéditas y consejos de solución de problemas también se incluyen.
Las variaciones de la forma
La esencia de la forma y sus variaciones es la exposición de ARN en solución acuosa a anhídridos electrófilos que acilar selectivamente grupos ribosa 2'-hidroxilo (2'-OH), produciendo aductos voluminosos en los sitios de modificación. Esta reacción química sirve como un medio de interrogar a la dinámica estructural de ARN locales, como los nucleótidos de cadena simple son más propensas a adoptar conformaciones favorables para ataque electrofílico por estos reactivos, mientras que la base emparejado o arquitectónicamente Constrnucleótidos objetivó son menos o no reactivo 10. Los sitios de formación de aductos se detectan mediante transcripción inversa a partir de la iniciación fluorescentemente o radiomarcado cebadores hibridados a un sitio específico en el ARN modificado (el "(+)" reacción de extensión del cebador). Cuando la transcriptasa inversa (RT) no atravesar los ribonucleótidos acilados, un grupo de productos de ADNc se produce cuyas longitudes coinciden con los sitios de modificación. Un control, "(-)" cebador de extensión reacción utilizando ARN que no ha sido expuestos a reactivo también se realiza de modo que la terminación prematura de la síntesis de ADN (es decir, "se detiene") debido a la estructura del ARN, no específica de ARN de hebra rotura, etc, mayo. distinguirse de deteniéndose producido por modificación química. Por último, dos reacciones de secuenciación didesoxi-inician a partir de los mismos cebadores se utilizan como marcadores para correlacionar nucleótidos reactivos con la secuencia primaria de ARN después de la electroforesis.
En la solicitud original de SHAPE, el mismo 32-P marcado en el extremo cebador se utiliza para los (+), -, y dos reacciones de secuenciación (). Los productos de estas reacciones se cargan en pocillos adyacentes en una placa de gel de poliacrilamida al 5-8%, y se fraccionó por electroforesis en gel desnaturalizante de poliacrilamida (PAGE; Figura 1). El análisis cuantitativo de las imágenes de gel producidas por la forma convencional se puede realizar utilizando SAFA, un software de análisis de la huella de semi-automatizado 13.
Por el contrario, la forma de alto rendimiento emplea cebadores marcados con fluorescencia y electroforesis capilar automatizado. Específicamente, para cada región de ARN bajo investigación, un conjunto de cuatro cebadores de ADN que tienen una secuencia común pero diferentes 5 'etiquetas fluorescentes deben ser sintetizados o comprados. Estos oligonucleótidos marcados de manera diferente-sirven para dos reacciones principales forma y dos reacciones de secuenciación, los productos de los cuales se agrupan y se fraccionó / detectaron por electroforesis capilar automatizado (CE). WherEAS el perfil de reactividad de los nt 100-150 de ARN se puede obtener a partir de un conjunto de cuatro reacciones utilizando el enfoque original, la forma de alto rendimiento permite la resolución de 300-600 nt a partir de una sola muestra agrupada 3. Hasta 8 conjuntos de reacciones puede ser fraccionado simultáneamente, mientras que tanto como 96 muestras pueden preparado para el fraccionamiento en el transcurso de 12 ejecuciones consecutivas de la CE (Figura 2). Por otra parte, el software SHAPEfinder, desarrollado para procesar y analizar los datos que se desprenden del CEQ y otros analizadores genéticos, es más automatizado y requiere mucho menos intervención del usuario de SAFA 13 u otros paquetes de gel de análisis.
Más avanzadas metodologías de alto rendimiento han surgido recientemente tales como PARS (análisis paralelo de la estructura del ARN) 14 y Frag-Seq (fragmento de secuenciación) 15, que utilizan enzimas específicos de la estructura en lugar de reactivos de alquilación en conjunción con técnicas de secuenciación de próxima generación para obtener information sobre la estructura del ARN. A pesar del atractivo de estas técnicas, las muchas limitaciones inherentes a la nucleasa de sondeo siguen siendo 16. Estos problemas pueden ser evitados en la secuenciación FORMA (SHAPE-Seq) 17 protocolo, donde la secuenciación de próxima generación está precedida por modificación química y la transcripción inversa del ARN de una manera similar a la realizada en la forma convencional. Si bien estos métodos pueden representar el futuro de la determinación de la estructura de ARN, es importante recordar que la secuenciación de próxima generación es muy caro, y sigue sin estar disponible para muchos laboratorios.
Análisis de datos SHAPE
Los datos producidos en el analizador genético se presentan en la forma de un electroferograma, en el que la intensidad de fluorescencia de la muestra (s) que fluye a través del detector capilar se representa en función de un índice de tiempo de migración. Esta parcela tiene la forma de las huellas superpuestas, según el canal cuatro de fluorescencias utiliza para detectar los diferentes fluoróforos, y donde cada traza se compone de los picos correspondientes a los productos de ADNc o secuenciación individuales. Datos electroferograma se exporta desde el analizador genético como un archivo de texto delimitado por tabuladores y se importan en la transformación ShapeFinder y software de análisis 18.
ShapeFinder se utiliza inicialmente para llevar a cabo una serie de transformaciones matemáticas en los datos para asegurar que los tiempos de migración y volúmenes pico reflejan con precisión las identidades y cantidades de los productos de reacción, respectivamente. Los picos son entonces alineados e integrados, y los resultados se tabulan junto con la secuencia de ARN primario. Un "perfil de reactividad" para el segmento pertinente de ARN se obtiene restando los valores de control a partir de la (+) valores asociados con cada ARN de nucleótidos, y la normalización de los datos tal como se describe a continuación. Este perfil se importa en RNAstructure (v5.3) Software de 19,20, lo que convierte la val reactividad normalizadaUES en limitaciones pseudo-energía que se incorporan en el algoritmo de plegado estructura secundaria del ARN. La combinación química de sondeo y plegado algoritmos de esta manera mejora significativamente la exactitud de la predicción de la estructura en comparación con cualquiera de los métodos solos 12,21. La salida de RNAstructure (v5.3) incluye imágenes de la energía más baja ARN estructuras secundarias con código de colores con el perfil FORMA reactividad (s), así como las mismas estructuras en Pruebas notación de punto-soporte. Este último puede posteriormente ser exportado al software dedicado a la representación gráfica de la estructura secundaria del ARN tales como Varna PseudoViewer 22 y 23.
Figura 1. Organigrama de la estructura de la determinación de ARN a través de SHAPE 4,10. (A) RNA may se obtiene a partir de muestras biológicas o por transcripción in vitro. (B) Dependiendo de la fuente, el ARN se pliega o se procesa y se modificó con el reactivo FORMA lo contrario. (C) La transcripción inversa usando cebadores marcados radiactivamente o fluorescentemente. (D) son productos de ADNc fraccionado ya sea a través de electroforesis capilar a base de gel o de poca altura. (E) Análisis de fragmentos. (F) la predicción de estructura de ARN. Haz clic aquí para ver más grande la figura.
Figura 2. El carácter de alto rendimiento de FORMA basados en CE permite el análisis rápido de múltiples ARN, y / o múltiples segmentos de los mismos ARN. (A) Representa cómo una RNA puede ser dividido en secciones 300-600 nt (código de color en verde, azul y rojo) (B) Las secciones del ARN se probaron de forma independiente utilizando diferentes conjuntos de cebadores fluorescentes (flechas negras) (C) juegos de reacciones se combinaron y se cargaron en los pocillos A1, B1, C1, etc, respectivamente, proporcionando una cobertura completa para el ~ 3 kb ARN1. Productos de reacción de RNAs 2, 3, 4, etc pueden prepararse de forma similar para el fraccionamiento de carreras electroforéticas consecutivos. Haz clic aquí para ver más grande la figura.
Diseño de cebadores y extensión de la terminal del ARN 3 '
Para el análisis de ARN de largo por FORMA de alto rendimiento, una serie de sitios de hibridación de cebadores debe ser seleccionado de tal manera que (i) están separados por ~ 300 nt, (ii) son 20-30 nt de longitud, y (iii) que el ARN / híbridos de ADN producidos por el recocido de ADN a estos sitios tienen una temperatura de fusión esperada de> 50 ° C. Además, los segmentos de ARN que se predicen para ser altamente estructurado se deben evitar, a pesar de hacer tal determinación requiere algo de conocimiento previo de la estructura de ARN, que es a menudo no está disponible. Cebadores de ADN que se hibridan a estos sitios a continuación, deben ser diseñados, teniendo cuidado de asegurarse de que no se espera que para formar dímeros estables o estructuras secundarias intrastrand.
Una vez diseñado, conjuntos de cebadores deben ser comprados (por ejemplo, de Integrated DNA Technologies, Ames, Iowa) o sintetizados 24,25. Los cebadores 5'-etiquetados con Cy5, Cy5.5,WellRedD2 (Beckman Coulter) y IRDye800 (Lycor) / WellRedD1 (Beckman Coulter) son los más adecuados para el Beckman Coulter CEQ 8000, proporcionando una buena intensidad de la señal y reducir al mínimo la interferencia. Oligonucleótidos marcados se pueden almacenar indefinidamente en pequeñas partes alícuotas de 10 micras, con -20 ° C, evitar los ciclos de congelación / descongelación repetidos.
Mediante el uso de cebadores diseñados de esta manera, es posible obtener datos de la forma para prácticamente todo un ARN de cualquier longitud. Sin embargo, la secuencia en o cerca del extremo 3 'de un ARN es siempre inaccesibles a la forma, a menos que el ARN está diseñado para contener una extensión 3' terminal (por ejemplo un "casete de estructura") a la que un cebador puede hibridar 4.
Preparación de ARN a través de Electroforesis Capilar
Aunque los ARN de las muestras biológicas pueden ser utilizados para la forma de alto rendimiento, el protocolo dado aquí está optimizado para el ARN producido por la transcripción in vitro. Comercial trakits de nscription tales como MEGAshortscript (Ambion) se utiliza junto con MegaClear columnas de purificación de ARN (Ambion) se adaptan bien a la generación de grandes cantidades de ARN puros. ARN se deben almacenar en tampón TE entre -20 ° C y -80 ° C. Para obtener los mejores resultados, los ARN deberían aparecer homogénea tanto por electroforesis en gel de poliacrilamida desnaturalizante y no desnaturalizante.
1. ARN plegable
2. Modificación química del ARN
Bueno caracteriza, reactivos electrófilos SHAPE incluyen anhídrido isatoico (IA), el anhídrido N-metilisatoico (NMIA), anhídrido 1-metil-7-nitro-isatoico (1M7) 26, y cianuro de benzoílo (BzCN) 27. De ellos, los más utilizados para la forma de alto rendimiento son 1M7 y NMIA, y sólo este último se encuentra disponible comercialmente (Life Technologies). La concentración final de la modificación de reactivo debe ser optimizada para cada ARN para obtener "un solo ataque" cinética de modificación, es decir, la condición en la que la mayoría de los ARN en solución se modifican una vez en la región de ARN que se analiza 11. Esta concentración óptima se puede determinar mediante la realización de múltiples reacciones en las que la concentración de reactivo es variada en toda la gama (s) indicados en la tabla en la Sección 2.1 a continuación. Usar la concentración de reactivo que produce una señal fácilmente detectable mientras minimizing la diferencia en la intensidad de la señal entre los productos de síntesis de ADN largas y cortas (por ejemplo, Figura 3).
Figura 3. Electroferogramas SHAPE producidos a partir de un ~ 360 nt ARN tratado con (A) 0 (B) 2,5 mM o (C) 10 mM 1M7. Todos los electroferogramas se muestran en la misma escala. Azul, huellas verde, rojo y negro corresponden a (+) productos de reacción (Cy5), (-) productos de reacción (Cy5.5), y las dos escaleras de secuenciación (D2 WellRed y IRDye800), respectivamente. El ARN se utilizan para producir la imagen (B) se ha tratado con la cantidad óptima de 1M7, lo que demuestra una buena resolución máxima y la intensidad, con una mínima caída de la señal a lo largo de la traza (izquierda). Leer longitud es máxima en estas condiciones. En contraste, la ausencia de int medioensity, picos bien resueltos en (A) sugiere una concentración subóptima de 1M7. Por el contrario, la caída de la señal evidente en (C) indica que solo la cinética de ataque no se observa, y el ARN es más de-modificado. En tales casos, sobre todo cuando no se espera RT para encontrarse con el extremo 5 'de la plantilla de ARN, leer longitud será subóptima.
Reactivo | La concentración óptima de 10 veces (en DMSO) | Tiempo parala degradación completa de reactivo 27 |
NMIA | 10-100 mM | ~ 20 min |
1M7 | 10-50 mM | 70 seg |
3. La transcripción inversa
Este paso genera los productos de ADNc marcadas con fluorescencia que se utilizan para identificar indirectamente el grado en que los nucleótidos de ARN han sido modificados por un reactivo FORMA. Para la forma, el rendimiento de Superíndice III (Invitrogen) RT fue superior a todas las demás probada RTS, y es la enzima elegido para su uso con esteprotocolo. Los oligonucleótidos marcados con Cy5 y Cy5.5 se utilizan para cebar el (+) y (-) reacciones, respectivamente. Para los ARN más cortas, los cebadores se hibridan con una extensión 3 'terminal del ARN nativo (por ejemplo, un "casete de estructura") con el fin de obtener información sobre el 3' terminal 4 Atención:. Desde este punto a través del CE, las muestras deben ser protegidos de luz.
Escaleras de secuenciación sirven como marcadores para la determinación de la posición de nucleótido durante el procesamiento de datos. Estos se generan utilizando un kit USB Ciclo de Secuenciación (# 78500), ADN que tiene la misma secuencia que el ARN que se estudian, y los cebadores etiquetados con D2 WellRed o D1/Lycor 800. Típicamente, el ADN utilizado en esta reacción será que utiliza como una plantilla para la transcripción del ARN en cuestión. Aunque el protocolo de reacción que aquí se presenta se parece mucho a la recomendada por el fabricante del kit, la reacción se escala hasta varias veces. Mientras ddA y el DDT se utilizan como terminadores de cadena en las reacciones descritas a continuación, cualquier par de terminadores puede ser utilizado para generar las escaleras de secuenciación.
5. Fraccionamiento de los productos de reacción por electroforesis capilar
La electroforesis capilar permite simultáneaseparación de los productos de síntesis de cDNA de cuatro reacciones agrupados en una sola muestra. Ocho muestras pueden ser fraccionado simultáneamente, mientras que tanto como 96 muestras pueden ser fraccionada durante una sola pasada (Figura 2).
Lo ideal sería que fuera de la cartilla y los picos fuertes de parada, señales para cada pico en los cuatro electroferograma trazas deben estar en el rango lineal, una bajada gradual de la señal es aceptable. A veces, sin embargo, grandes picos (paradas) son evidentes incluso en la reacción de control, y éstos pueden interferir con el procesamiento posterior de los datos. ADNc truncados que dan lugar a estos picos pueden ser el resultado de un obstáculo natural durante la transcripción inversa (por ejemplo, estructura secundaria del ARN), o la degradación del ARN. En el primer caso, aditivos, tales como betaína pueden mejorar la capacidad de procesamiento y reducir RT RT pausa de terminación / prematura.
Proceso de datos
ShapeFinder software permite al usuario visualizar y transformar las huellas de la CE y convertirlos en perfiles de reactividad forma 18. Una vez que los valores de reactividad se tabulan, se normalizan y se importan en RNAStructure (v5.3) para generar y refinar los modelos estructurales secundarios.
6. ShapeFinder Software
Una extensión de la BaseFinder rastro procesamiento platformulario 29, la versión publicada de ShapeFinder está disponible gratuitamente para uso no comercial 18. Las instrucciones detalladas para el manejo de datos en ShapeFinder cuentan con la documentación del software.
Nota: El análisis de los datos es fundamental para la precisión de la forma, y algunas consideraciones son muy importantes en este análisis, incluyendo:
7. Normalización de datos
Para incorporar perfiles de reactividad de nucleótidos en el algoritmo de estructura secundaria que utiliza el software RNAStructure (v5.3), y / o para comparar los perfiles de ARN estrechamente relacionados, los datos de forma se deben normalizar de una manera estandarizada 12. Esto implica (i) con exclusión de los valores atípicos de los cálculos posteriores, (ii) determinar la reactividad "máxima efectiva" (es decir, la media de la más alta 8% del valor de la reactividad, con exclusión de los valores atípicos), y (iii) normalización dividiendo todos los valores de reactividad por la "máxima efectiva", de la siguiente manera:
8. Modelado de datos
Software de RNAstructure (v5.3) se utiliza para predecir la estructura secundaria del ARN experimentalmente-compatible (s) con las limitaciones de la energía seudo-libres derivados del análisis de la forma 19. El software proporciona representaciones gráficas de las estructuras más bajas de energía 2D ARN así como la representación textual de estas estructuras en la notación de punto-soporte. Este último puede ser importado en una estructura de ARN espectador de la preferencia del usuario, por ejemplo, Pseudoviewer 23 o 22 Varna, para producir imágenes con calidad de publicación.
Nota: Se debe tener cuidado al considerar las estructuras producidas por el software RNAstructure (v5.3). Por ejemplo, el software no puede resolver interacciones terciarias tales como pseudonudos y bucles que se besan, ni puede distinguir si la falta dereactividad en una cierta región es debido a la protección estérica por emparejamiento de bases o proteínas unidas. Como consecuencia, estos factores, junto con las energías reportados para las estructuras individuales, deben tenerse en cuenta en la presentación de un modelo estructural definitiva.
ARN que contiene el VIH-1 elemento de respuesta rev (RRE) y un 3 'casete estructura de la terminal 4 se preparó a partir de un plásmido linealizado por la transcripción in vitro, después de lo cual se pliega por calentamiento, enfriamiento, y la incubación a 37 ° C en la presencia de MgCl 2. ARN fue expuesto a NMIA y luego a transcripción inversa a partir de un cebador de ADN 5'-marcado en el extremo hibridó con el casete de estructura de la terminal 3 '. La fo...
Se presenta aquí un protocolo detallado para la forma de alto rendimiento, una técnica que permite la determinación de la estructura secundaria de la resolución de un solo nucleótido de ARN de cualquier tamaño. Por otra parte, el acoplamiento de datos experimentales forma con algoritmos de predicción de estructura secundaria facilita la generación de modelos de ARN 2D con un mayor grado de precisión que es posible con cualquiera de los métodos solos. La combinación de cebadores marcados con fluorescencia y au...
No hay conflictos de interés declarado.
S. Lusvarghi, J. Sztuba-Solinska, KJ Purzycka, JW Rausch y SFJ Le Grice son apoyados por el Programa de Investigación Intramural del Instituto Nacional del Cáncer, de los Institutos Nacionales de Salud, EE.UU..
Name | Company | Catalog Number | Comments |
REAGENTS | |||
N-methylisatoic anhydride (NMIA) | Life technologies | M25 | Dissolve in anhydrous DMSO |
1-methyl-t-nitroisatoic anhydride (1M7) | see ref. 22 | ||
Superscript III Reverse Transcriptase | Life technologies | 18080044 | 10,000 units |
Thermo sequenase cycle sequencing kit | Affymetrix | 78500 | |
Materials provided by the user | |||
RNA of interest | 6 pmol per reaction (the limit of detection will be determined by the instrument) | ||
Sets of four 5' labeled primers (Cy5, Cy5.5, WellRed D2 and WellRed D1/Licor IR800) | Primers are complementary to the RNA and are used in reverse transcription and sequencing reactions. The listed fluorophores are optimal for the Beckman Coulter 8000 CEQ. Primers may be purchased or synthesized in house. | ||
DNA template | DNA is used for sequencing reactions, and must contain the sequence of the RNA being studied - including any 3'terminal extension, if present. Where applicable, it is often convenient to use the RNA transcription template. | ||
Buffers | |||
10x RNA renaturation buffer | 100 mM Tris-HCl pH 8.0, 1 M KCl, 1 mM EDTA | ||
5X RNA folding buffer | 200 mM Tris-HCl pH 8.0, 25 mM MgCl2, 2.5 mM EDTA, 650 mM KCl. (This buffer might be changed depending on the case (e.g. pH, EDTA, Mg, RNase inhibitor) | ||
2.5X RT mix | 4 μl 5X buffer, 1 μl 100 mM DTT, 1.5 μl water,1 μl 10 mM dNTPs, 0.5 μl SuperScript III. Note that the 5X buffer and 100 mM DTT are provided with purchase of SuperScript III (Invitrogen). | ||
GenomeLab Sample Loading Solution (Beckman Coulter) | Attention: Avoid multiple freeze-thaw cycles | ||
EQUIPMENT | |||
Capillary electrophoresis | Beckman | CEQ8000 | |
Thermocycler | varies |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados