Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
Se midió la liberación de la tensión en un axón que fue parcialmente lesionada con un disector de láser por la medición simultánea de espectroscopia de fuerza se realiza en una sonda ópticamente atrapado adherido a la membrana del axón. El protocolo experimental desarrollado evalúa la adhesión axón al sustrato de cultivo.
La formación de conexiones funcionales en una red neuronal en desarrollo está influido por las señales extrínsecas. El crecimiento de axones de las neuronas en desarrollo está sujeto a las señales químicas y mecánicas, y los mecanismos por los que se detecta y responde a señales mecánicas, son poco conocidos. La elucidación del papel de las fuerzas en la maduración de las células permitirá el diseño de los andamios que puede promover la adhesión celular y del citoesqueleto de acoplamiento al sustrato, y por lo tanto mejorar la capacidad de los diferentes tipos neuronales para regenerarse después de una lesión.
Aquí se describe un método para aplicar medidas de espectroscopia de fuerza simultáneas durante la lesión celular inducida por láser. Medimos liberación de la tensión en el axón parcialmente lesionada por el seguimiento interferométrico simultánea de una sonda atrapada ópticamente adherido a la membrana del axón. El protocolo experimental detecta la liberación de la tensión con la sensibilidad picoNewton, y la dinámica de la liberación de la tensión enresolución de tiempo de milisegundos. Por lo tanto, ofrece un método de alta resolución para estudiar cómo el acoplamiento mecánico entre las células y los sustratos puede ser modulada por el tratamiento farmacológico y / o por las propiedades mecánicas distintas del sustrato.
Microscopía óptica es uno de los sistema de imagen menos invasivo disponible para observar las células vivas. Con la explotación de efectos tales como la presión de la radiación (como en pinzas ópticas 1), o flujo de fotones de alta energía (como en láser disector 2), esta tecnología se extendió a nano-manipulación. El sistema de imagen óptica proporciona un control preciso de visualizar y manipular dianas celulares sub 3. Al mismo tiempo, gracias a la calibración precisa de la potencia del láser emitido, herramientas ópticas lograr ya sea suave o manipulación de la muestra invasiva con una reproducibilidad sin precedentes.
Varios laboratorios integrados, en la misma configuración experimental, pinzas ópticas y disector de láser con el fin de realizar la ablación orgánulos 4, se fusionen entre sí diferentes células 5, o para estimular las células por impulsado ópticamente cargas 6,7. Si bien las pinzas ópticas, después de la calibración de la rigidez óptica, permitenel control de la fuerza aplicada a la celda en una escala picoNewton, sistemas de disección láser puede modular la manipulación óptica, que se extiende desde la membrana foto-poración a la ablación de orgánulos individuales o disección de las estructuras subcelulares. Sin embargo, la calibración de la disección con láser se basa en la evaluación cualitativa de la entidad de manipulación óptica con respecto a la energía entregada a la muestra, basado principalmente en el análisis de imagen que ilustra los cambios morfológicos causados a la muestra 8. En el método presentado, nos demuestran cómo realizar mediciones de espectroscopia de fuerza durante la disección láser axonal de las neuronas en desarrollo, para cuantificar, en la escala picoNewton, la fuerza producida por una alteración del equilibrio en la estructura del citoesqueleto de un compartimiento subcelular 9. Neuronas cultivadas se adhieren al sustrato, y polarizan durante el desarrollo. La fase de polarización se produce durante los primeros cinco días in vitro. En la etapa dos de polarización, una de las extruidoción neuritas se hace más largo, y se diferencian para convertirse en el axón 10. Elongación axonal en respuesta a la fuerza de tracción en el cono de crecimiento se ha modelado previamente por el modelo de Dennerl 11. Recientemente, este modelo se ha ampliado para incluir 12 el papel de la adhesión de neuritas a los sustratos de matriz extracelular. Este modelo biofísico, propuesto después de observaciones experimentales 13, mostró que fuerzas de tracción en el cono de crecimiento, la propagación a lo largo de la neurita, son moduladas por las adhesiones focales al sustrato. Del mismo modo, lesión axonal produce una liberación local de la propagación de la tensión hacia el cuerpo de la célula. Por lo tanto, se propuso que la medición de tal tensión liberada en un lugar a lo largo del axón entre la lesión y el soma celular ofrece la posibilidad de evaluar el resultado de amortiguación de las adhesiones focales no afectadas.
Calibramos la energía necesaria fotón de flujo del disector de láser para controlar la extensión de la damag axonal infligidae, de transección completa a lesión parcial. Después de la calibración, se repitió lesión parcial a los axones de varias diferenciación de las neuronas y el protocolo desarrollado para cuantificar la liberación de la tensión, y por lo tanto obtuvimos un parámetro cuantitativo para estimar la adherencia del axón al sustrato 14.
En el presente trabajo se describe en detalle el protocolo desarrollado, lo que representa un procedimiento experimental precisa para evaluar y comparar con la sensibilidad picoNewton la adhesión axonal al sustrato en diferentes condiciones experimentales, tales como el tratamiento químico 14, o diferentes tipos de soporte de cultivo celular.
1. Configuración óptica
El sistema óptico entero fue descrito anteriormente 15. En pocas palabras, el sistema de pinzas ópticas se basa en una onda continua de iterbio (CW) de fibra láser que opera a 1.064 nm (IPG Laser GmbH). Un modulador espacial de luz (SLM) (LCOS-SLM, modelo X10468-07 - Hamamatsu) varía la fase de la entrada del haz láser IR para controlar la posición del punto de enfoque de captura en la placa de cultivo por ordenador hologramas generados. Los Blue-pinzas de software (enlace web en la mesa de los equipos) hologramas generados libremente disponibles proyectados en el modulador espacial de luz. El interferómetro de medidas de espectroscopia de fuerza se basaba en un fotodiodo de cuatro cuadrantes (QPD, S5980 con C5460SPL 6041 bordo - Hamamatsu) y un fotodiodo (PD, PDA100A-EC - Thorlabs).
La fuente de la disección láser fue un pulso sub-nanosegundo UV Nd: YAG a 355 nm (PNV-001525-040, PowerChip nano-Pulse UV laser - Teem Photonics). Un acústico-modulador óptico (MQ110-A3-UV, 355 nm de sílice fusionados-AA-opto-electrónica) controla la potencia del láser UV entregado a la muestra.
El holográfica pinzas ópticas y láser micro-disector se integraron en un microscopio vertical modificado (BX51 - Olympus) equipado con un 60X, 0,9 NA etapa de la inmersión en agua objective.The del microscopio se compone de un eje lineal 3-motor de corriente continua de micro-posicionamiento sistema (M-126.CG1, Física-Instruments) que lleva una etapa de nano-posicionamiento piezoeléctrico 3-eje por separado (P-733.3DD, Física-Instruments) para combinar el movimiento grueso de la muestra con una resolución sub-nanométrica del piezo- etapa. El sistema de platina del microscopio estaba equipado con dos lazos de control que actúa sinérgicamente para mantener el punto de enfoque de captura en la posición correcta, en función del modo de trabajo seleccionado (posición o fuerza de sujeción, estática o dinámica) 16. En particular, un circuito de retroalimentación interna actúa en una etapa piezoeléctrico, para mantener el talón en un selectoed distancia desde el centro de la trampa. El otro bucle externo controla la posición de la platina motorizada para explotar la región abarcada por el piezo-actuador en un área más grande que su carrera disponible 17. Cuando la etapa de piezo-alcanza el límite de la carrera disponible en una dirección, el bucle externo se mueve la etapa de micro en la dirección opuesta, por lo tanto el piezoeléctrico se recupera hacia su posición central porque es el seguimiento de la perla atrapado adherido a la muestra. Cuando la etapa de piezo-llega a la posición central de su gama supuesto, la etapa de micro detuvo. Otros detalles del sistema se presentan en la Guiggiani et al 16,17.
Un dispositivo Peltier (QE1 calentamiento resistivo calentador con controlador de doble canal TC-344B - Warner Instruments) controla la temperatura del cultivo celular bajo el microscopio (37 ° C). En el cultivo, el pH y la humedad se mantuvieron en condiciones fisiológicas aireando un polidimetil de diseño personalizadosiloxano (PDMS) manga (integrando el objetivo del microscopio) con carbógeno humidificado (95% O 2, 5% de CO 2).
2. Cultivo de células Preparación
Todos los protocolos experimentales fueron aprobados por el Ministerio de Sanidad italiano. Los cultivos primarios se obtuvieron de hipocampo de los ratones (C57BL6J, Charles River) en el día embrionario 18 (E18).
3. Revestimiento de bolas
4. Elija neurona aislada. Separe un cordón del sustrato Cultura, Trampa y Muévete Junto a la neurona
5. Mueva la Trampa posición con respecto al punto Dissector Laser y Axon Posición por ordenador holograma generado y calibrar la rigidez Pinzas Ópticas
6. Conecte el grano a la Axon. Realizar Medición Fuerza Axotomía y simultánea
7. Cuantificar la tensión de liberación total
La célula genera fuerzas de tracción sobre el sustrato mediante sus adhesiones focales. Fuerza generada por los elementos del citoesqueleto están en equilibrio con la fuerza que contrarresta del sustrato de cultivo. Después de la lesión inducida por láser de la neurita, algunos de los cables tensados citoesqueleto se interrumpen y su tensión equilibrada se libera porque se elimina la fuerza de oposición de la adhesión sustrato. La tensión liberada se distribuye parcialmente en las adhesiones focales no a...
Se presenta en este trabajo un método cuantitativo para comparar la adhesión de neuritas al sustrato de la cultura, mediante la realización de mediciones de espectroscopia de fuerza simultánea durante la lesión celular inducida por láser. La liberación de la tensión medida está relacionada con el grado de adhesión de la célula al sustrato: células con un mayor número de adhesiones focales deben liberar menos tensión. La medición de la liberación de la tensión en términos de piconewtons proporciona una ...
Los autores declaran que no tienen intereses financieros en competencia.
Alberto Guiggiani para el desarrollo del sistema de control en tiempo real, Evelina Chieregatti y Hanako Tsushima para discusiones interesantes, Giacomo PRUZZO y Alessandro Parodi para el desarrollo de la electrónica y de software a medida, y Claudia y Marina Chiabrera Nanni por su asesoramiento y asistencia en la preparación de cultivos celulares.
Name | Company | Catalog Number | Comments |
REAGENTS | |||
Polymer microspheres, 4 μm, COOH coated | Bangs laboratories | PC05N/6700 | |
PolyLink Protein Coupling Kit | Polyscience | 19539 | |
EQUIPMENT | |||
IR laser | IPG Laser GmbH | YLM-5-SC-LP | ytterbium continuous wave (CW) fiber laser operating at 1064 nm, with linear polarization |
Spatial light modulator | Hamamatsu | LCOS-SLM 10468-07 | |
Blue-tweezers software | Optics group, University of Glasgow | Free downloadable software | http://www.physics.gla.ac.uk/Optics/projects/tweezers/slmcontrol/ |
ImageJ | Hamamatsu | Free downloadable software | http://rsbweb.nih.gov/ij/ |
QPD | Thorlabs | S5980 with C5460SPL 6041 board | Four quadrant photo-diode to measure x, y trapped probe displacement |
PD | Teem Photonics | PDA100A-EC | Photodiode to measure z trapped probe displacement |
nano-Pulse UV laser | AA-optoelctronics | PNV-001525-040 | Pulsed UVA laser, pulse length 400 ps |
Acoustic Optic Modulator | Olympus | MQ110-A3-UV, 355nm fused silica | |
Upright microscope | Andor | BX51 | Equipped with a 60, 0.9 NA, water dipping objective |
CCD | Warner Instruments | V887ECSUVB EMCCD | |
Peltier device | Physic Instruments | QE1 resistive heating with TC-344B dual channel heater controller | |
Microscope stage: micro+piezo stage | National Instruments | Three linear stages M-126.CG1 carrying a separate 3-axis piezoelectric nano-positioning stage P-733.3DD | |
Daq | NI PCI-6229 | Acquiring the x, y, z position of the trapped probe, and sending feedback loop signals to microscope stage | |
Linux Real Time Application Interface (RTAI) machine | Real time feedback loop system, to control stage position, developed on a dedicated PC desktop |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados