Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
Here we describe our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. Neurons expressing ChR2 are identified by their response to blue light. The method uses standard extracellular recording equipment, and serves as an inexpensive alternative to calcium imaging or visually-guided patching.
Un reto importante en la neurofisiología ha sido caracterizar las propiedades de respuesta y función de los numerosos tipos de células inhibitorio en la corteza cerebral. Estamos aquí compartimos nuestra estrategia para obtener, bien aisladas grabaciones de una sola unidad estables de interneuronas inhibitorias identificados en la corteza del ratón anestesiado utilizando un método desarrollado por Lima y sus colegas 1. Las grabaciones se realizaron en ratones que expresan canalrodopsina-2 (ChR2) en subpoblaciones neuronales específicas. Los miembros de la población se identifican por su respuesta a un breve destello de luz azul. Esta técnica - denominada "PINP", o identificación asistida Fotoestimulación de poblaciones neuronales - se pueden implementar con equipos estándar de grabación extracelular. Puede servir como una alternativa económica y accesible para imágenes de calcio o parches visualmente guiada, con el fin de apuntar a registros extracelulares a las células genéticamente identificados. HERE proporcionamos un conjunto de directrices para la optimización del método en la práctica cotidiana. Nosotros refinamos nuestra estrategia específicamente para atacar a las células parvalbúmina-positivo (VP +), pero hemos encontrado que funciona para otros tipos de interneuronas, así, como (CR +) interneuronas calretinin expresan somatostatina-expresión (SOM +) y.
Characterizing the myriad cell types that comprise the mammalian brain has been a central, but long-elusive goal of neurophysiology. For instance, the properties and function of different inhibitory cell types in the cerebral cortex are topics of great interest but are still relatively unknown. This is in part because conventional blind in vivo recording techniques are limited in their ability to distinguish between different cell types. Extracellular spike width can be used to separate putative parvalbumin-positive inhibitory neurons from excitatory pyramidal cells, but this method is subject to both type I and type II errors2,3. Alternatively, recorded neurons can be filled, recovered, and stained to later confirm their morphological and molecular identity, but this is a pain-staking and time-consuming process. Recently, genetically identified populations of inhibitory interneurons have become accessible by means of calcium imaging or visually guided patch recordings. In these approaches, viral or transgenic expression of a calcium reporter (such as GCaMP) or fluorescent protein (such as GFP) allows identification and characterization of cell types defined by promoter expression. These approaches use 2-photon microscopy, which requires expensive equipment, and are also limited to superficial cortical layers due to the light scattering properties of brain tissue.
Recently, Lima and colleagues1 developed a novel application of optogenetics to target electrophysiological recordings to genetically identified neuronal types in vivo, termed “PINP” – or Photostimulation-assisted Identification of Neuronal Populations. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. Unlike many other optogenetic applications, the goal is not to manipulate circuit function but simply to identify neurons belonging to a genetically-defined class, which can then be characterized during normal brain function. The technique can be implemented with standard extracellular recording equipment and can therefore serve as an accessible and inexpensive alternative to calcium imaging or visually-guided patching. Here we describe an approach to PINPing specific cell types in the anesthetized auditory cortex, with the expectation that the more general points can be usefully applied in other preparations and brain regions.
In cortex, PINP holds particular promise for investigating the in vivo response properties of inhibitory interneurons. GABAergic interneurons comprise a small, heterogeneous subset of cortical neurons4. Different subtypes, marked by the expression of particular molecular markers, have recently been shown to perform different computational roles in cortical circuits5-9. As genetic tools improve it may eventually be possible to distinguish morphologically- and physiologically-separable types that fall within these broad classes. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. This strategy was developed specifically for targeting parvalbumin-positive (PV+) cells, but we have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons. Although PINPing is conceptually straightforward, it can be surprisingly unyielding in practice. We learned a number of tips and tricks through trial-and-error that may be useful to others attempting the method.
NOTA: El siguiente protocolo es de acuerdo con los Institutos Nacionales de Salud aprobado por la Universidad de Oregon Cuidado de Animales y el empleo Comisión.
1. Cirugía aguda
2. Grabación de Set-up
3. Recta PINP-in '
Estamos aquí compartimos nuestra estrategia para la obtención de grabaciones de una sola unidad de interneuronas inhibitorias genéticamente clasificados en la corteza del ratón anestesiado, utilizando un método de optogenética desarrollado por Lima et al. Tabla 1 detalla el cóctel anestésico sugerido, ketamina-medetomidina-Acepromazina (1. " KMA "). La Figura 1 representa un microelectrodo de tungsteno, preparado para la grabación. La Figur...
Aunque PINP es conceptualmente sencillo, puede ser difícil en la práctica. Un importante factor determinante del éxito es la elección de electrodo. El radio de escucha eléctrica es el parámetro crítico. Debe ser lo suficientemente grande para detectar picos de luz evocado cuando la punta está todavía a cierta distancia de una célula ChR2 +, de modo que se puede ajustar la velocidad de avance en consecuencia. Al mismo tiempo, debe ser lo suficientemente restringido para permitir un buen aislamiento de una sola ...
The authors have no competing financial interests.
This work was funded by the Whitehall Foundation and the NIH. We thank Clifford Dax (University of Oregon Technical Support Administration) for his help and expertise in designing a circuit for light delivery.
Name | Company | Catalog Number | Comments |
ChR2-EYFP Line | Jackson Colonies | 12569 | |
Pvalb-iCre (PV) Line | Jackson Colonies | 8069 | |
Sst-iCre (SOM) Line | Jackson Colonies | 13044 | |
Cr-iCre (CR) Line | Jackson Colonies | 10774 | |
Agarose | Sigma-Aldrich | A9793 | Type III-A, High EEO |
Micro Point (dural hook) | FST | 10066-15 | |
Surgical Scissors | FST | 14084-09 | |
Scalpel | FST | 10003-12 (handle), 10011-00 (blades) | |
Puralube Ophthalmic Ointment | Foster & Smith | 9N-76855 | |
Homeothermic Blanket | Harvard Apparatus | 507220F | |
Tungsten Microelectrodes | A-M Systems | 577200 | 12 MΩ AC resistance, 127 μm diameter, 12° tapered tip, epoxy-coated |
Capillary Glass Tubing | Warner Instruments | G150TF-3 | |
Heat Shrink Tubing | DigiKey | A332B-4-ND | |
Zapit Accelerator | DVA | SKU ZA/ZAA | Use with standard Super Glue. |
Microelectrode AC Amplifier 1800 | AM Systems | 700000 | |
MP-285 Motorized Micromanipulator | Sutter | MP-285 | |
4-channel Digital Oscilloscopes | Tektronix | TDS2000C | |
Powered Speakers | Harman | Model JBL Duet | |
Manual Manipulator | Scientifica | LBM-7 | |
800 µm Fiber Optic Patch Cable | ThorLabs | FC/PC BFL37-800 | |
Power Meter | ThorLabs | PM100D (Power Meter), S121C (Standard Power Sensor) | |
475 nm Cree XLamp XP-E | DigiKey | XPEBLU-L1-R250-00Y01DKR-ND | LED power and efficiency are continually increasing, so we recommend checking for the latest products (www.cree.com). |
Arduino UNO | DigiKey | 1050-1024-ND |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados