Method Article
Here, we present a protocol that examines specific steps of the viral entry to identify and evaluate novel antiviral agents.
Cell-based systems are useful for discovering antiviral agents. Dissecting the viral life cycle, particularly the early entry stages, allows a mechanistic approach to identify and evaluate antiviral agents that target specific steps of the viral entry. In this report, the methods of examining viral inactivation, viral attachment, and viral entry/fusion as antiviral assays for such purposes are described, using hepatitis C virus as a model. These assays should be useful for discovering novel antagonists/inhibitors to early viral entry and help expand the scope of candidate antiviral agents for further drug development.
Viral infections are a constant threat to the public health and a significant cause of epidemic diseases, morbidity, and deaths worldwide. Specific modes of control against viral infections include vaccine development and antiviral therapies. While vaccine efforts have proven successful in immunizing against several viruses, many viral pathogens remain without a protective vaccine including dengue virus (DENV), human cytomegalovirus (HCMV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV)1-5. Antivirals, on the other hand, play an important role for the management of these viral infections when prophylactic vaccines are unavailable. However, to date, only few licensed and cost-effective antiviral drugs are available compared to the number of viral pathogens that threatens the public health. More importantly, due to an increase in global travel and rapid urbanization, the situation is aggravated by risks of epidemic outbreaks from emerging/re-emerging viral infections that are being introduced into non-indigenous areas6. Recent outbreaks caused by severe acute respiratory syndrome (SARS) virus, influenza viruses (H1N1, H5N1, H3N2, and H7N9), DENV, West Nile virus (WNV), measles virus (MV), Middle East Respiratory Syndrome (MERS) virus, and Ebola virus6-12 are among the examples reflecting the need for antivirals development when immunization and/or therapeutics are unavailable. In addition, there is always a potential risk of generating drug-resistant infections with currently used antivirals. Thus, the continuous development and expansion of the scope of antivirals to these emerging/re-emerging viral infections are necessary to provide better management strategies and safeguard the public health.
Most antiviral therapies consist of direct acting antivirals (DAAs) which target a specific viral protein or cofactor that mediates important steps in the viral life cycle. For example, the nucleoside analogue Acyclovir inhibits herpesvirus DNA polymerase, protease inhibitors Boceprevir and Telaprevir antagonize the HCV NS3, and Oseltamivir and Zanamivir are neuraminidase inhibitors that block the release of influenza virus particles from infected cells13-15. There are however very few licensed viral entry inhibitors including Enfuvirtide, which targets HIV gp41 to prevent fusion, and Maraviroc, which blocks the HIV co-receptor CCR5, thereby preventing viral entry16. Exploring novel antagonists/inhibitors to viral entry could help provide additional therapeutics for prophylactic or therapeutic use, such as in combination with other antivirals with a different mechanism of action to better manage viral infections17-19.
Identification of antivirals can involve structure-guided drug design and candidate drug screening-based strategy. Methods for assessing antiviral activity of test agents include biochemical assays of enzymatic activity and evaluation by cell-based systems20-23. In cell-based systems, the viral life cycle can be dissected into distinct stages of infection, such as entry events (attachment, fusion, uncoating), the replication phase (viral genome replication and protein translation), and virion egress (assembly, maturation, and release). Since the assays can be adapted to investigate each specific stage using various tools and methods, this approach allows identification/examination of potential candidate antivirals with a specific mechanism of action targeting the distinct stage analyzed. For instance, to analyze drug effect specifically on the free virus particles prior to binding to the host cell, a ‘viral inactivation assay’ can be performed. In this assay, the virus is allowed to incubate with the test drug and then diluted to titrate out the drug before infecting a cell monolayer. Additional steps such as viral attachment and entry/fusion stages can also be analyzed individually, by shifting the temperature during the infection. For many enveloped viruses, viral entry/fusion at the host cell membrane is greatly facilitated at 37 °C, but is typically precluded at 4 °C which does not affect virus binding24-29. Finally, the use of reporter viruses or cell systems could facilitate these studies and permit a high-throughput analysis.
We previously employed the cell-based approach and dissected the early entry of various enveloped viruses for the examination of antiviral compounds that potentially antagonize viral entry30,31. Herein, the various methods used, including viral inactivation, viral attachment, and viral entry/fusion assays, are described.
Nota: Asegúrese de que todos los procedimientos relacionados con el cultivo de células y de infección por el virus se llevan a cabo en las campanas de bioseguridad certificados que sean apropiados para el nivel de bioseguridad de las muestras que se manejan. Para el propósito de describir los protocolos, la luciferasa Gaussia HCV reportero de etiquetado se usa como un modelo de virus 32. En el contexto de los resultados representativos, el ácido compuestos chebulágico (CHLA) y punicalagina (PUG) se utilizan como antivirales candidatos que se dirigen las interacciones glicoproteína viral con glicosaminoglicanos superficie celular durante la entrada viral temprana pasos 31. La heparina, que se sabe que interfiere con la entrada de muchos virus 30,31,33,34, se utiliza como un tratamiento control positivo en tal contexto. Para base de fondo en las técnicas de virología, la propagación de virus, determinación del título de virus, y la expresión de la dosis infecciosa en unidades formadoras de placa (PFU), se centran unidades formadoras (FFU), o multiplicidad de infección (MOI), el lector es repreferido para hacer referencia 35. Para ejemplos anteriores y condiciones optimizadas utilizados para los virus que se muestran en los resultados representativos, se remite al lector a las referencias 30-32,36-39, así como detalles enumerados en la Tabla 1, la Figura 1A, y la Figura 2A.
1. Cultivo Celular, Preparación Compuesto y citotoxicidad Compuesto
2. Lectura de la infección viral
Nota: La lectura de la infección viral depende del sistema utilizado y virus puede implicar métodos tales como ensayos de placas o measuring señales indicadoras de virus reportero-etiquetado. El método para detectar la infección por VHC reportero basado en la actividad de informador de luciferasa se describe a continuación.
3. Inactivación Viral Ensayo
Nota: Los ejemplos de período de incubación y la dosis viral de diversos virus unare enumerados en la Figura 1A. Las concentraciones más altas del virus también pueden ser probados por el aumento de la MOI / PFU.
4. Ensayo Adjunto Viral
Nota: Los ejemplos de período de incubación y la dosis viral para varios virus se enumeran en la Figura 2A, el "Anexo". Las concentraciones más altas del virus también pueden ser probados por el aumento de la MOI / PFU.
5. Viral Entry / ensayo de fusión
Nota: Ejemplo de períodos de incubación y dosis viral para varios virus se enumeran en "Entrada / Fusión 'Figura 2A. Las concentraciones más altas del virus también pueden ser probados por el aumento de la MOI / PFU.
En la Figura 1, se realizó el "ensayo de inactivación viral 'para examinar si dos compuestos naturales CHLA específica y PUG podrían inactivar los virus con envoltura diferentes en el estado libre de células y prevenir la infección subsiguiente. La respuesta a la dosis antiviral y la citotoxicidad de estos compuestos se han determinado antes de realizar el estudio mecanicista 31. Los virus fueron pre-tratados con los compuestos de ensayo y después las mezclas de virus a los fármacos se diluyeron a concentraciones sub-terapéuticas antes de la inoculación sobre la respectiva monocapa de células para cada sistema de virus. Como se muestra en la Figura 1, tanto CHLA y PUG aparecieron para interactuar con los viriones libres de células, dando lugar a efectos irreversibles que protegían la monocapa de células de la infección subsiguiente. Los dos compuestos de ensayo alcanzan alrededor de 100% de inhibición contra HCMV, VHC y DENV-2, mientras que un 60 - 80% de bloque se observó contra MV y RSV. Estos resultados Suggest que CHLA y PUG tienen impacto directo sobre estas partículas virales libres al inactivar ellos y neutralizando su infectividad.
En la Figura 2, el apego y ensayos de entrada / fusión se llevaron a cabo para explorar el efecto de CHLA y PUG en contra de estos principios de los acontecimientos relacionados con la entrada-virales de HCMV, VHC, DENV-2, MV, y RSV. Tanto CHLA y PUG impidieron efectivamente la unión de los virus investigados en la célula huésped respectiva, como se muestra por la inhibición de la infección viral resultante (Figura 2, el "Anexo ': barras de color gris claro). El efecto inhibidor sobre la fijación del virus por ambos compuestos era similar contra HCMV (Figura 2B), HCV (Figura 2C), DENV-2 (Figura 2D), y RSV (Figura 2F), que van desde 90 hasta 100%. Por otro lado, PUG parecía ser más eficaz que CHLA contra MV de unión (Figura 2E), con la tasa de inhibición de la two compuestos que varían entre 50 - 80%. La heparina tratamiento de control, que es conocido para bloquear la entrada de muchos virus, también inhibió la unión de HCMV, DENV-2, RSV, ad MV, pero fue menos eficaz contra el VHC. La subsiguiente 'ensayo de entrada / fusión viral' examinó si CHLA y PUG mantuvieron su actividad durante la fase de entrada de virus / fusión (Figura 2, 'Entrada / Fusión': barras de color gris oscuro). Una vez más, tanto CHLA y PUG se observaron perjudicar efectivamente el paso de entrada / fusión viral de los virus examinados (Figura 2 B - F), produciendo un 50 - efecto protector del 90% en la respectiva monocapa celular. La heparina también inhibe potentemente la entrada / fusión de DENV-2 y las infecciones por VRS, pero fue menos eficaz contra HCMV, VHC y MV (<40% de inhibición en promedio).
Virus | Tipo de la célula |
HCMV | HEL |
VHC | Huh-7.5 |
DENV-2 | Vero |
MV | CHO-SLAM |
RSV | HEp-2 |
Tabla 1:. Tipo de célula huésped para la infección viral El tipo celular utilizado para cada sistema de la infección viral se describe en los resultados representativos se indica. Los detalles adicionales con respecto a las células se pueden encontrar en la referencia 31.
Figura 1. Inactivación de infecciones virales por el CHLA compuestos de ensayo y PUG Diferentes virus se trataron con los compuestos de ensayo durante un período largo. (Se incubaron durante 1.5 - 3 horas antes de la titulación; barras de color gris claro) o corto período de tiempo (inmediatamente diluido; gris oscuro bares) a 37 ° C antes de una dilución a concentraciones sub-terapéuticación y posterior análisis de la infección en las respectivas células de acogida. (A) Esquema del experimento (que se muestra a la izquierda) con la concentración de virus final (PFU / pocillo o MOI), período de incubación del virus con la droga a largo plazo (i), y el tiempo de incubación posterior (ii) indicado para cada virus en el cuadro a la derecha. Los análisis para (B) HCMV, (C) del VHC, (D) DENV-2, (E) MV, y (F) de RSV se indican en cada panel adicional. Los resultados se representan frente al tratamiento de control negativo DMSO para la infección por virus y los datos mostrados son las medias ± error estándar de la media (SEM) de tres experimentos independientes. Esta cifra se ha modificado de la referencia 31. Haga clic aquí para ver una versión más grande de esta figura.
Figura 2. Evaluación de las actividades antivirales de la CHLA compuestos de ensayo y PUG contra la fijación del virus y la entrada / fusión. (A) El procedimiento experimental, la concentración de virus (PFU / pocillo o MOI), y el tiempo de adición y el tratamiento con los compuestos de prueba (i, ii, iii) se presentan para cada virus en los esquemas y las tablas asociadas. En el análisis de la fijación del virus (barras de color gris claro), las monocapas de diferentes tipos de células fueron pre-refrigerados a 4 ° C durante 1 hr, a continuación, co-tratado con los respectivos virus y compuestos de ensayo a 4 ° C (1,5 - 3 h; i) antes de lavar los inóculos y los compuestos de ensayo para su posterior incubación (37 ° C; ii) y el examen de la infección por virus. En la entrada del virus / análisis de fusión (barras gris oscuro), monocapas de células sembradas se pre-refrigerada a 4 ° C durante 1 hora y después se estimularon con los virus respectivos a 4 ° C durante 1,5 - 3 h (i). Las células fueron entonceslavada y tratada con los compuestos de ensayo durante un periodo de incubación adicional (ii) durante el cual la temperatura se cambió a 37 ° C para facilitar el evento de entrada / fusión viral. Al final de la incubación, los virus extracelulares fueron retirados por cualquiera de tampón citrato (pH 3,0) o lavados con PBS y las células se incubaron adicionalmente (iii) para el análisis de la infección por virus. Resultados para (B) HCMV, (C) del VHC, (D) DENV-2, (E) MV, y (F) de RSV se indican en cada panel adicional. Los datos se representan frente al tratamiento de control negativo de la infección por el virus de DMSO y se presentan como medias ± SEM de tres experimentos independientes. Esta cifra se ha modificado de la referencia 31. Haga clic aquí para ver una versión más grande de esta figura.
In this report the methods to identify and evaluate antiviral compounds based on a mechanistic approach of dissecting the early viral entry events were described. Specifically, the assays allowed us to examine the effect of test compounds on free virus particles, viral attachment, and viral entry/fusion. Critical steps were implemented to distinctly evaluate the drug effect on the specific stage of early viral entry. For instance, in the ‘viral inactivation assay’, the dilution of the virus-drug mixture to sub-therapeutic concentration prevents significant interaction between the test compound and the host cell surface by ‘titrating out’ the drug. This ensures that the inhibitory effect observed on the subsequent infection of the host cell is due to a direct interaction between the test compound and the cell-free virions, rather than an effect from the test compound on host cell membrane or membrane-associated molecules, including viral receptors30. Similarly, the shift in temperature between 4 °C (which allows for virus binding but not entry) and 37 °C (which facilitates virus entry/fusion) in the ‘viral attachment assay’ and ‘viral entry/fusion assay’ are crucial to determine the test compound’s effect on each of these specific events. This is feasible due to the temperature sensitivity of enveloped viruses during these steps in the infection24-29. It is therefore important that the assays are performed at the indicated temperature to ensure the accuracy of the results; for example, by carrying out the experiment on ice to maintain at 4 °C and by placing the sample directly in a 37 °C incubator for the temperature shift. In addition, the use of negative (ex. DMSO solvent for drug preparation) and positive (ex. heparin treatment) controls also help further establish the assays’ accuracy. The utility and applicability of such methods have been demonstrated in many antiviral studies26,30,31,40,41. Note that while heparin is included as a control for all three assays in the context of the representative results, it typically blocks the initial virus binding rather than the ensuing fusion/entry step (as reflected by the data in Figure 2). Additional controls could also be used, such as neutralizing antibodies directed against the virus (for viral inactivation assay), antibodies that mask the cell surface receptors for the virus (for viral attachment assay), and membrane fusion inhibitors (for viral fusion/entry assay).
The assays described in this report, which are specific to the early stages of the viral infection, are useful in terms of application as secondary tests to characterize the mechanism of action of candidate drugs from primary screens which typically target the viral infection more broadly. Alternatively, they could also be incorporated in primary screens if one is specifically looking for inhibitors of early viral entry, including virus inactivating agents, viral attachment antagonists, and inhibitors to viral entry/fusion. In this case, their use allows a more focused and precise screen analysis for the identification of mechanism-specific antiviral candidates, which, in turn, would expedite downstream drug development.
The use of cell-based assays in identifying antiviral agents provides several important advantages compared to biochemical assays, including revealing potential off-target effects (such as cytotoxicity) and adding physiological relevance to the bioactivity of the test agents42. These issues are important considerations for deciding whether a candidate agent is of value for continuation in subsequent phases of drug development. Similarly, the early viral entry-specific assays described in this report allow examination of the drug effect on the distinct viral entry stage at the cellular level, and more specifically in the context of an authentic viral infection in vitro. The results obtained from such assays would therefore help better predict the antiviral efficacy of the test compounds and also identify potentially unwanted off-target effects against the host cell. One potential limitation though, is that an in vitro cell-based assay may not completely reflect the actual in vivo entry step in the context of a natural viral infection. Nonetheless, the assays presented in this protocol do serve as an analytical platform for mechanism-based identification and evaluation of novel antiviral agents.
The development of reporter viruses or reporter cell systems to quantitate the amount of viral infection has greatly facilitated cell-based screening and evaluation of antiviral compounds. Examples include the use of recombinant viruses carrying a reporter gene or by means of recombinant human cell lines containing a reporter gene driven by the specific virus promoter31,43. In this report, the infection from luciferase-tagged HCV can be easily monitored by quantitating the reporter signal, thus facilitating data analysis. By incorporating these useful reporter-based tools, the early viral entry assays described here can essentially be adapted into high-throughput format for mechanism-based screening of small molecule libraries.
In conclusion, a protocol was described for assays dissecting the early viral entry as a means of identifying and evaluating mechanism-specific antiviral compounds. Such assays would be useful for discovering novel antagonists/inhibitors to viral entry and help expand the scope of antiviral agents for development as prophylactic and/or therapeutic treatments.
The authors declare that no competing interests exist.
This study is supported by funding from Taipei Medical University Hospital (102TMU-TMUH-19) and the Ministry of Science and Technology of Taiwan (MOST103-2320-B-038-031-MY3).
Name | Company | Catalog Number | Comments |
DMEM | GIBCO | 11995-040 | |
FBS | GIBCO | 26140-079 | |
Penicillin-Streptomycin | GIBCO | 15070-063 | |
Amphotericin B | GIBCO | 15290-018 | |
DMSO | Sigma | D5879 | |
In vitro toxicology assay kit, XTT-based | Sigma | TOX2 | |
PBS pH 7.4 | GIBCO | 10010023 | |
Microplate reader | Thermo Scientific | 89087-320 | |
Microcentrifuge | Thermo Scientific | 75002420 | |
BioLux Gaussia luciferase assay kit | New England Biolabs | E3300L | |
Luminometer | Promega | GloMax-20/20 | |
Sodium citrate, dihydrate | Sigma | 71402 | |
Potassium chloride | Sigma | P5405 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados