Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Aquí presentamos un protocolo para la Microscopía de Conductancia Iónica de Sonda de Salto (HPICM), una técnica de sonda de escaneo sin contacto que permite obtener imágenes a nanoescala de haces de estereocilios en células ciliadas auditivas vivas.
Las células ciliadas del oído interno detectan los desplazamientos inducidos por el sonido y transducen estos estímulos en señales eléctricas en un haz de cabello que consiste en estereocilios que están dispuestos en filas de altura creciente. Cuando los estereocilios se desvían, tiran de pequeños enlaces de punta extracelular (~ 5 nm de diámetro) que interconectan estereocilios, que transmiten fuerzas a los canales de transducción mecanosensibles. Aunque la mecanotransducción se ha estudiado en células ciliadas vivas durante décadas, los detalles ultraestructurales funcionalmente importantes de la maquinaria de mecanotransducción en las puntas de los estereocilios (como la dinámica del enlace de la punta o la remodelación de los estereocilios dependientes de la transducción) aún se pueden estudiar solo en células muertas con microscopía electrónica. Teóricamente, las técnicas de sonda de barrido, como la microscopía de fuerza atómica, tienen suficiente resolución para visualizar la superficie de los estereocilios. Sin embargo, independientemente del modo de imagen, incluso el más mínimo contacto de la sonda de microscopía de fuerza atómica con el haz de estereocilios generalmente daña el haz. Aquí presentamos un protocolo detallado para la microscopía de conductancia iónica de sonda de salto (HPICM) de imágenes de células ciliadas auditivas de roedores vivos. Esta técnica de sonda de escaneo sin contacto permite obtener imágenes de lapso de tiempo de la superficie de células vivas con una topografía compleja, como las células ciliadas, con una resolución de nanómetros únicos y sin hacer contacto físico con la muestra. El HPICM utiliza una corriente eléctrica que pasa a través de la nanopipeta de vidrio para detectar la superficie de la célula en las proximidades de la pipeta, mientras que un sistema piezoeléctrico de posicionamiento 3D escanea la superficie y genera su imagen. Con HPICM, pudimos obtener imágenes de paquetes de estereocilios y los enlaces que interconectan estereocilios en células ciliadas auditivas vivas durante varias horas sin daños notables. Anticipamos que el uso de HPICM permitirá la exploración directa de los cambios ultraestructurales en los estereocilios de las células ciliadas vivas para una mejor comprensión de su función.
A pesar del hecho de que los haces de estereocilios en las células ciliadas auditivas son lo suficientemente grandes como para ser visualizados por microscopía óptica y desviados en células vivas en un experimento de pinza de parche, los componentes estructurales esenciales de la maquinaria de transducción, como los enlaces de punta, solo se pueden visualizar con la microscopía electrónica en células muertas. En las células ciliadas auditivas de mamíferos, la maquinaria de transducción se encuentra en los extremos inferiores de los enlaces de punta, es decir, en las puntas de los estereocilios de fila más corta1 y se regula localmente a través ....
El estudio se realizó de acuerdo con las recomendaciones de la Guía para el Cuidado y Uso de Animales de Laboratorio de los Institutos Nacionales de Salud. Todos los procedimientos con animales fueron aprobados por el Comité Institucional de Cuidado y Uso de Animales (IACUC) de la Universidad de Kentucky (protocolo 00903M2005).
1. Fabricación y prueba de las nanopipetas
El protocolo presentado en este artículo se puede utilizar para visualizar cualquier célula viva con topografía compleja. Siguiendo estos pasos, obtenemos rutinariamente imágenes de haces de células ciliadas auditivas de ratas vivas(Figura 6B,D). A pesar de tener una resolución X-Y más baja en comparación con las imágenes SEM, nuestras imágenes HPICM pueden resolver con éxito las diferentes filas de estereocilios, la forma de las puntas de los estereocilios e incl.......
Para obtener imágenes HPICM exitosas, los usuarios deben establecer un sistema de bajo ruido y baja vibración y fabricar pipetas apropiadas. Recomendamos encarecidamente el uso de estándares de calibración AFM para probar la estabilidad del sistema antes de intentar realizar cualquier imagen de células vivas. Una vez que se prueba la resolución del sistema, los usuarios pueden considerar la posibilidad de obtener imágenes de muestras de órganos fijos de Corti para familiarizarse con la configuración de imágenes.......
Los autores no tienen intereses contrapuestos.
Agradecemos al Prof. Yuri Korchev (Imperial College, Reino Unido) por el apoyo y asesoramiento a largo plazo en todas las etapas del proyecto. También agradecemos a los Dres. Pavel Novak y Andrew Shevchuk (Imperial College, Reino Unido), así como a Oleg Belov (Centro Nacional de Investigación de Audiología, Rusia) por su ayuda con el desarrollo de software. El estudio fue apoyado por NIDCD/NIH (R01 DC008861 y R01 DC014658 a G.I.F.).
....Name | Company | Catalog Number | Comments |
Analog oscilloscope | B&K Precision | 2160C | Analog oscilloscope for real-time monitoring of nanopipette current and Z-axis approach |
AFM calibration standards | TED PELLA Inc | HS-100MG; HS-20MG | These 100 and 20 nm calibration standards are used to test the performance of HPICM system |
Benchtop vibration Isolator | AMETEK/TMC | Everstill K-400 | Active vibration isolation |
Borosilicate glass capillaries | World Precision Instruments (WPI) | 1B100F-4 | Borosilicate glass capillaries for the nanopipettes |
D-(+)-Glucose | Sigma-Aldrich | G8270 | To be added to the bath solution to adjust osmolarity |
Digitizer | National Instruments Corporation | PCI-6221 | Multi-channel input/output digitizer |
Fast analog Proportional-Integral-Derivative (PID) control for Z movement | Standford Research Systems | SIM900, SIM960, SIM980 | Instrumentation modules integrated in an external PID controller for Z movement. It requires a fast response that is usually not implemented in commercial piezo amplifiers. |
Faraday cage | AMETEK/TMC | Type II | Required to shield electromagnetic interference |
Glass bottom dish | World Precision Instruments (WPI) | FD5040-100 | Used as the dish for the chamber for the tissue |
Hanks' Balanced Salt Solution (HBSS) | Gibco, Thermo Fisher Scientific | 14025092 | Extracellular (bath) solution |
Instrumentation amplifier | Brownlee Precision | Model 440 | Instrumentation amplifier provides required offsets, filtering, and secondary magnification or attenuation |
Laser-based micropipette puller | Sutter Instrument | P-2000/G | Micropipette puller to fabricate the nanopipettes. Laser is needed for sharp quartz pipettes. |
Lebovitz's L-15, without phenol red | Gibco, Thermo Fisher Scientific | 21083027 | Extracellular (bath) solution |
Micromanipulator | Scientifica | PatchStar | Used for "course" positioning of the Z piezo actuator |
Microscope | Nikon | Eclipse TS100 | Inverted optical microscope |
Patch amplifier | Molecular Devices | Axopatch 200B | The patch clamp amplifier measures the current through the nanopipette |
Piezo amplifier (XY axes) | Physik Instrumente (PI) | E-500.00, E-505.00, E-509.C2A | Amplification and PID control for XY piezo translation stage |
Piezo amplifier (Z axis) | Piezosystem jena | ENT 400 & 800 | Custom amplifier consisting of ENT 400 power supply and two ENT 800 amplifiers in parallel to achieve max current of 1.6 nA |
Plastic Coverslips | TED PELLA Inc | 26028 | Used in the fabrication of the chambers for the tissue |
SICM controller & software* | Ionscope, UK (ionscope.com) | N/A | Custom controller based on SBC6711 digital signal processing board from Innovative Integration Ltd |
Silicone elastomer (Sylgard) | World Precision Instruments (WPI) | SYLG184 | Used to attach the flexible glass fibers to the chamber for the tissue |
Silicon glue | The Dow Chemical Company | 734 | Used to glue the different parts of the chamber for the tissue |
Tungsten rod | A-M Systems | 717500 | Used for holding the dental floss strands in the chamber for the tissue |
XY piezo nanopositioner | Physik Instrumente (PI) | P-733.2DD | XY translation stage with capacitive sensors |
Z piezo nanopositioner | Piezosystem jena | RA 12/24 SG | Ring piezoactuator with a strain gage sensor |
*Ionscope does not sell separate SICM controllers anymore. There are few other commercial systems: NX12-Bio and NX10 SICM, | |||
Park Systems, Korea and SICM modules from ICAPPIC Limited, UK (icappic.com). All these systems are based on the original | |||
HPICM principles. However, imaging stereocilia bundles in the hair cells requires several custom modifications that are technically | |||
challenging (or even impossible) in the closed “ready-to-go” systems such as Ionscope or NX12-Bio/NX10. Currently, there is only one | |||
modular system (ICAPPIC) that has the flexibility to suit any SICM/HPICM experiment but requires some component integration. |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados