Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Describimos una configuración experimental para administrar metabolitos hiperpolarizados marcados con 13C en modo de perfusión continua a un corazón de ratón perfundido aislado. Un enfoque dedicado de adquisición de 13C-RMN permitió la cuantificación de la actividad enzimática metabólica en tiempo real, y un análisis multiparamétrico de 31R-P permitió la determinación del contenido de ATP tisular y el pH.

Resumen

El metabolismo es la base de procesos importantes en la vida celular. La caracterización de cómo funcionan las redes metabólicas en los tejidos vivos proporciona información crucial para comprender el mecanismo de las enfermedades y diseñar tratamientos. En este trabajo, describimos procedimientos y metodologías para estudiar la actividad metabólica en la célula en un corazón de ratón retrógradamente perfundido en tiempo real. El corazón se aisló in situ, junto con un paro cardíaco para minimizar la isquemia miocárdica y se perfundió dentro de un espectrómetro de resonancia magnética nuclear (RMN). Mientras estaba en el espectrómetro y bajo perfusión continua, se administró piruvato hiperpolarizado [1-13 C] al corazón, y las posteriores tasas de producción hiperpolarizadas de [1-13 C] lactato y [13C] bicarbonato sirvieron para determinar, en tiempo real, las tasas de producción de lactato deshidrogenasa y piruvato deshidrogenasa. Esta actividad metabólica del piruvato hiperpolarizado [1-13C] se cuantificó con espectroscopia de RMN en un modelo de manera libre utilizando el enfoque de adquisición de excitaciones de saturación selectivas del producto. 31 La espectroscopia P se aplicó entre las adquisiciones hiperpolarizadas para monitorear la energética cardíaca y el pH. Este sistema es excepcionalmente útil para estudiar la actividad metabólica en el corazón sano y enfermo del ratón.

Introducción

Las alteraciones en el metabolismo cardíaco están asociadas con una variedad de miocardiopatías y a menudo forman la base de los mecanismos fisiopatológicos subyacentes1. Sin embargo, existen numerosos obstáculos para estudiar el metabolismo en tejidos vivos, ya que la mayoría de los ensayos bioquímicos requieren la homogeneización de la lisis tisular y celular y / o el trazado radiactivo. Por lo tanto, existe una necesidad apremiante de nuevas herramientas para investigar el metabolismo miocárdico en tejidos vivos. La resonancia magnética (RM) de sustratos hiperpolarizados marcados con 13C permite mediciones en tiempo real del metab....

Protocolo

El comité conjunto de ética (IACUC) de la Universidad Hebrea y el Centro Médico Hadassah aprobaron el protocolo de estudio para el bienestar animal (MD-19-15827-1).

1. Preparación del tampón Krebs-Henseleit

  1. Un día antes del experimento, prepare una versión modificada del tampón de Krebs-Henseleit (KHB)26. Inicialmente, disolver 118 mM NaCl, 4,7 mM KCl, 0,5 mM piruvato, 1,2 mMMgSO4, 25 mM NaHCO3 y 1,2 mM KH 2 PO4 en H2O de doble destilación.
  2. Burbujear esta mezcla con 95%/5%O2/CO 2 durante 20 min, y luego a....

Resultados

Los espectros 31P registrados desde un corazón de ratón perfundido con KHB y solo desde el tampón se muestran en la Figura 1A. Las señales de α, β y γ-ATP, PCr y Pi se observaron en el corazón. La señal Pi estaba compuesta de dos componentes principales: en el campo más alto (lado izquierdo de la señal), la señal Pi se debía principalmente al KHB a un pH de 7,4; en el campo inferior (lado derecho de la señal), la señal Pi era más amplia y menos homogénea debido al.......

Discusión

Demostramos una configuración experimental que está diseñada para investigar el metabolismo hiperpolarizado del piruvato [1-13C], la energética de los tejidos y el pH en un modelo de corazón de ratón aislado.

Los pasos críticos dentro del protocolo son los siguientes: 1) asegurar que el pH del tampón sea 7.4; 2) garantizar que se incluyan todos los componentes del búfer; 3) evitar la coagulación de la sangre en los vasos cardíacos mediante inyecciones de heparina; 4) evit.......

Divulgaciones

No hay divulgaciones.

Agradecimientos

Este proyecto recibió financiación de la Fundación Científica de Israel en virtud del acuerdo de subvención Nº 1379/18; la Beca Jabotinsky del Ministerio de Ciencia y Tecnología de Israel para Ciencias Aplicadas y de Ingeniería para estudiantes de doctorado directos No. 3-15892 para D.S.; y el programa de investigación e innovación Horizonte 2020 de la Unión Europea en virtud del acuerdo de subvención No. 858149 (AlternativesToGd).

....

Materiales

NameCompanyCatalog NumberComments
Equipment
HyperSense DNP PolariserOxford Instruments52-ZNP91000HyperSense, 3.35 T, preclinical dissolution-DNP hyperpolarizer
NMR spectrometer RS2DNMR Cube, 5.8 T, equiped with a 10 mm broad-band probe
Peristaltic pump Cole-Parmer07554-95
Temperature probeOsensaFTX-100-LUX+NMR compatible temprature probe
Somnosuite low-flow anesthesia systemKent Scientific
Lines, tubings, suture
Platinum cured silicone tubesCole-ParmerHV-96119-16L/S 16 I.D. 3.1 mm 
Thin polyether ether ketone (PEEK) linesUpchurch Scientificid. 0.040”
Intravenous catheter BD Medical38132322 G
Silk sutureEthiconW577HWire diameter of 3-0
Chemicals and pharmaceuticals
[1-13C]pyruvic acidCambridge Isotope LaboratoriesCLM-8077-1
Calcium chlorideSigma-Aldrich21074CAS: 10043-52-4
D-(+)-GlucoseSigma-AldrichG7528CAS: 50-99-77
Heparin sodiumRotexmedicaHEP5A0130C0160
Hydrochloric acid 37%Sigma-Aldrich258148CAS: 7647-01-0
Insulin aspart (NovoLog)Novo Nordisk
IsofluraneTerrel
Magnesium SulfateSigma-Aldrich793612CAS: 7487-88-9
Potassium chlorideSigma-AldrichP4504CAS: 7447-40-7
Potassium phosphate monobasicSigma-AldrichP9791CAS: 7778-77-0
Sodium bicarbonateGadot GroupCAS: 144-55-8
Sodium chlorideSigma-AldrichS9625CAS: 7647-14-5
Sodium hydroxideSigma-Aldrich655104CAS: 1310-73-2
Sodium phosphate dibasicSigma AldrichS7907CAS: 7558-79-4
Sodium phosphate monbasic dihydrateMerck6345CAS: 13472-35-0
TRIS (biotechnology grade)Amresco0826CAS: 77-86-1
Trityl radical OX063GE Healthcare ASNC100136OX063
NMR standards
13C standard sampleCambridge Isotope LaboratoriesDLM-72A40% p-dioxane in benzene-D6
31P standard sampleMade in house105 mM ATP and 120 mM phenylphosphonic acid in D2O
Software
Excel 2016Microsoft
MNovaMestrelab Research

Referencias

  1. Aquaro, G. D., Menichetti, L. Hyperpolarized 13C-magnetic resonance spectroscopy: Are we ready for metabolic imaging. Circulation. Cardiovascular Imaging. 7 (6), 854-856 (2014).
  2. Schroeder, M. A., et al.

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Biolog aN mero 194Metabolismoim genes metab licasagente de imagenespectroscopia de resonancia magn ticalactato deshidrogenasapiruvato deshidrogenasa1 13C piruvatopHfosfato inorg nico

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados