Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

La microscopía de dispersión Raman estimulada (SRS) es una técnica de imagen potente, no destructiva y sin etiquetas. Una aplicación emergente es la histología Raman estimulada, donde las imágenes SRS de dos colores en las transiciones Raman de proteínas y lípidos se utilizan para generar imágenes de pseudo-hematoxilina y eosina. Aquí, demostramos un protocolo para imágenes SRS de dos colores en tiempo real para el diagnóstico de tejidos.

Resumen

La microscopía de dispersión Raman estimulada (SRS) se ha convertido en una poderosa técnica de imagen óptica para el diagnóstico de tejidos. En los últimos años, se ha demostrado que el SRS de dos colores puede proporcionar imágenes equivalentes a hematoxilina y eosina (H&E) que permiten un diagnóstico rápido y confiable del cáncer cerebral. Tal capacidad ha permitido emocionantes aplicaciones de diagnóstico de cáncer intraoperatorio. Las imágenes SRS de dos colores del tejido se pueden realizar con una fuente láser de picosegundos o femtosegundos. Los láseres de femtosegundo tienen la ventaja de permitir modos de imagen flexibles, incluidas imágenes hiperespectrales rápidas e imágenes SRS de dos colores en tiempo real. Un enfoque de enfoque espectral con pulsos láser chirriados se usa típicamente con láseres de femtosegundo para lograr una alta resolución espectral.

La adquisición de SRS de dos colores se puede realizar con modulación ortogonal y detección de bloqueo. La complejidad del canto de pulso, la modulación y la caracterización es un cuello de botella para la adopción generalizada de este método. Este artículo proporciona un protocolo detallado para demostrar la implementación y optimización de SRS de enfoque espectral e imágenes en tiempo real de dos colores del tejido cerebral de ratón en el modo epi. Este protocolo se puede utilizar para una amplia gama de aplicaciones de imágenes SRS que aprovechan la alta velocidad y la capacidad de imágenes espectroscópicas de SRS.

Introducción

El diagnóstico tisular tradicional se basa en protocolos de tinción seguidos de un examen bajo un microscopio óptico. Un método de tinción común utilizado por los patólogos es la tinción H&E: la hematoxilina tiñe los núcleos celulares de un azul violáceo, y la eosina tiñe la matriz extracelular y el citoplasma de rosa. Esta simple tinción sigue siendo el estándar de oro en patología para muchas tareas de diagnóstico de tejidos, particularmente el diagnóstico de cáncer. Sin embargo, la histopatología de H&E, particularmente la técnica de seccionamiento congelado utilizada en un entorno intraoperatorio, todavía tiene limitaciones. El procedimiento de tinción es un proce....

Protocolo

Todos los procedimientos experimentales con animales se llevaron a cabo con cerebros de ratón de 200 μm, fijos y seccionados, de acuerdo con el protocolo (# 4395-01) aprobado por el Comité del Instituto de Cuidado y Uso animal (IACUC) de la Universidad de Washington. Los ratones de tipo salvaje (cepa C57BL/6J) son sacrificados con CO2. Luego, se realiza una craneotomía para extraer sus cerebros para la fijación en paraformaldehído al 4% en solución salina tamponada con fosfato. Los cerebros están incrustados en una mezcla de agarosa al 3% y gelatina al 0,3% y se seccionan en rodajas de 200 μm de espesor mediante un vibratomo.

Resultados

Optimización de la resolución espectral:
La dispersión a través de un material se ve afectada por el medio dispersivo (longitud y material) y la longitud de onda. Cambiar la longitud de la varilla de dispersión afecta la resolución espectral y el tamaño de la señal. Es una relación de toma y daca que se puede sopesar de manera diferente dependiendo de la aplicación. Las varillas estiran el pulso del haz de ser ancho en frecuencia y estrecho en el tiempo a ser estrecho en frecuencia y ancho e.......

Discusión

El esquema de imágenes SRS de dos colores presentado en este protocolo depende de la implementación adecuada de imágenes SRS de un solo color. En las imágenes SRS de un solo color, los pasos críticos son la alineación espacial, la alineación temporal, la profundidad de modulación y el cambio de fase. La combinación espacial de los dos haces se logra mediante un espejo dicroico. Se utilizan varios espejos de dirección para un ajuste fino al enviar las vigas al espejo dicroico. Una vez que los haces se combinan c.......

Divulgaciones

Los autores declaran que no hay conflictos de intereses.

Agradecimientos

Este estudio fue apoyado por NIH R35 GM133435 a D.F.

....

Materiales

NameCompanyCatalog NumberComments
100 mm Achromatic LensTHORLABSAC254-100-BBroadband, 650 - 1,050 nm, achromatic lens focal length, 100 mm
20 MHz bandpass filterMinicircuitsBBP-21.4+Lumped LC Band Pass Filter, 19.2 - 23.6 MHz, 50 Ω
200 mm Achromatic LensTHORLABSAC254-200-BBroadband, 650 - 1,050 nm, achromatic lens focal length, 200 mm
Achromatic Half WaveplateUnion OpticWPA2210-650-1100-M25.4Broadband half waveplate
Achromatic Quarter WaveplateUnion OpticWPA4210-650-1100-M25.4Broadband quarter waveplate
Beam SamplerTHORLABSBSN1110:90 Plate Beamsplitter
Dichroic MirrorTHORLABSDMSP1000Other dichroics with a center wavelength around 1,000 nm can be used.
DMSO (Dimethyl sulfoxide)Sigma Aldrich472301Solvent for calibration of Raman shift. Other solvents with known Raman peaks can be used.
Electrooptic Amplitude ModulatorTHORLABSEO-AM-NR-C1Two EOMs are needed for orthogonal modulation and dual-channel imaging. Resonant version is recommended so lower driving voltage can be used.
False H&E Staining ScriptMatlabhttps://github.com/TheFuGroup/HE_Staining
Fanout BufferPRL-414BPulse Research Lab1:4 TTL/CMOS Fanout Buffer and Line Driver, for generating the EOM driving frequency and the reference to the lock-in
Fast PhotodiodeTHORLABSDET10A2Si Detector, 1 ns Rise Time
Frequency DividerPRL-220APulse Research LabTTL Freq. Divider (f/2, f/4, f/8, f/16), for generating 20MHz from the laser output.
Highly Dispersive Glass RodsUnion OpticCYLROD01High dispersion H-ZF52A Rod lens 120 mm, SF11 Rod lens 100 mm
Insight DS+NewportLaser system capable of outputting two synchronzied pulsed lasers (one fixed beam at 1, 040 nm and one tunable beam, ranging from 680-1,300 nm) with a repetition rate of 80 MHz. 
Lock-in AmplifierLiquid InstrumentsMoku LabLock-in amplifier to extract SRS signal from the photodiode. A Zurich Instrument HF2LI or similar instrument can be used as well.
MirrorsTHORLABSBB05-E03-10Broadband Dielectric Mirror, 750 - 1,100 nm. Silver mirrors can also be used.
Motorized Delay StageZaberX-DMQ12P-DE52Delay stage for fine control of the temporal overlap of the pump and the Stokes lasers. Any other motorized stage should work.
Oil Immersion CondensorNikonCSC10031.4 NA. Other condensers with NA>1.2 can be used.
OscilloscopeTektronixTDS7054Any other oscilloscope with 400 MHz bandwdith or higher should work.
Phase ShifterSigaTekSF50A2For shifting the phase of the modulation frequency
PhotodiodeHamamatsu CorpS3994-01Silicon PIN diode with large area (10 x 10 cm2). Other diodes with large area and low capacitance can be used.
Polarizing Beam SplitterUnion OpticPBS9025-620-1000Broadband polarizing beamsplitter
Refactive Index Databaserefractiveindex.info
Retro-reflectorEdmund Optics34-408BBAR Right Angle Prism. Other prisms or retroreflector can be used.
RF Power AmplifierMinicircuitsZHL-1-2W+Gain Block, 5 - 500 MHz, 50 Ω
Scan MirrorsCambridge Technologies6215HWe used a 5mm mirror set with silver coating
ScanImageVidrioScanImage BasicLaser scanning microscope control software
Shortpass FilterTHORLABSFESH100025.0 mm Premium Shortpass Filter, Cut-Off Wavelength: 1,000 nm. For efficient suppression of the Stokes, two filters may be necessary.
Upright MicroscopeNikonEclipse FN1Any other microscope frame can be used. If a laser scanning microscope is available, it can be used directly. Otherwise, a galvo scanner and scan lens needed to be added to the microscope.
Water Immersion ObjectiveOlympusXLPLN25XWMP2The multiphoton 25X Objective has a NA of 1.05. Other similar objectives can be used.

Referencias

  1. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols. 2008, (2008).
  2. Cui, M., Zhang, D. Y. Artificial intelligence and computational pathology.

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Bioingenier aN mero 180

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados