Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Aquí, presentamos un protocolo para reconstituir haces de microtúbulos in vitro y cuantificar directamente las fuerzas ejercidas dentro de ellos utilizando trampeo óptico simultáneo y microscopía de fluorescencia de reflexión interna total. Este ensayo permite la medición a nivel nanométrico de las fuerzas y desplazamientos generados por los conjuntos de proteínas dentro de las redes de microtúbulos activos.

Resumen

Las redes de microtúbulos se emplean en las células para realizar una amplia gama de tareas, que van desde actuar como pistas para el transporte de vesículas hasta trabajar como matrices especializadas durante la mitosis para regular la segregación cromosómica. Las proteínas que interactúan con los microtúbulos incluyen motores como las quinesinas y la dineína, que pueden generar fuerzas activas y movimiento direccional, así como proteínas no motoras que entrecruzan filamentos en redes de orden superior o regulan la dinámica del filamento. Hasta la fecha, los estudios biofísicos de las proteínas asociadas a microtúbulos se han centrado abrumadoramente en el papel de las proteínas motoras individuales necesarias para el transporte de vesículas, y se ha logrado un progreso significativo en la elucidación de las propiedades generadoras de fuerza y la regulación mecanoquímica de las quinesinas y las dineínas. Sin embargo, para los procesos en los que los microtúbulos actúan como carga y pista, como durante el deslizamiento del filamento dentro del huso mitótico, se entiende mucho menos sobre la regulación biofísica de los conjuntos de las proteínas de reticulación involucradas. Aquí, detallamos nuestra metodología para sondear directamente la generación de fuerza y la respuesta dentro de redes mínimas de microtúbulos reticulados reconstituidas a partir de microtúbulos purificados y proteínas mitóticas. Los pares de microtúbulos están entrecruzados por proteínas de interés, un microtúbulo se inmoviliza a un cubreobjetos de microscopio y el segundo microtúbulo es manipulado por una trampa óptica. La microscopía de fluorescencia de reflexión interna total simultánea permite la visualización multicanal de todos los componentes de esta red de microtúbulos a medida que los filamentos se separan para generar fuerza. También demostramos cómo estas técnicas se pueden utilizar para sondear las fuerzas de empuje ejercidas por los conjuntos de quinesina-5 y cómo surgen fuerzas de frenado viscosas entre pares de microtúbulos deslizantes reticulados por el MAP mitótico PRC1. Estos ensayos proporcionan información sobre los mecanismos de ensamblaje y función del huso y pueden adaptarse más ampliamente para estudiar la mecánica de la red de microtúbulos densos en diversos contextos, como el axón y las dendritas de las neuronas y las células epiteliales polares.

Introducción

Las células emplean redes de microtúbulos para realizar una amplia variedad de tareas mecánicas, que van desde el transporte de vesículas 1,2,3 hasta la segregación cromosómica durante la mitosis 4,5,6. Muchas de las proteínas que interactúan con los microtúbulos, como las proteínas motoras moleculares quinesina y dineína, generan fuerzas y están reguladas por cargas mecánicas. Para comprender mejor cómo funcionan estas moléculas críticas, los investigadores han empleado métodos bio....

Protocolo

1. Preparación de microtúbulos

NOTA: Cuando se emplean proteínas de reticulación marcadas con GFP, rojas (por ejemplo, rodamina) y rojas lejanas (por ejemplo, HiLyte647 biotiniladas, denominadas rojo lejano biotinilado en el resto del texto) el etiquetado de fluoróforos orgánicos de los microtúbulos funciona bien. Se puede lograr una diafonía mínima entre los tres canales durante la obtención de imágenes mediante el uso de un filtro de fluorescencia de reflexión interna total (TIRF) de banda cuádruple de alta calidad.

  1. Preparar las existencias de semillas de microtúbulos GMPCPP
    1. Suspender 1 mg de tubulina lio....

Resultados

La preparación de haces de microtúbulos adecuados para el análisis biofísico se considera exitosa si se cumplen varios de los criterios clave. Primero, las imágenes en tres colores deben revelar dos microtúbulos alineados con una concentración de proteína de reticulación que decora preferentemente la región de superposición (Figura 5B, C y Figura 6B). Idealmente, la distancia entre el borde de superposición y el extr.......

Discusión

Las redes de microtúbulos son empleadas por innumerables tipos de células para realizar una amplia gama de tareas que son fundamentalmente de naturaleza mecánica. Para describir cómo funcionan las células tanto en estados sanos como en estados de enfermedad, es fundamental comprender cómo estas redes a escala micrométrica están organizadas y reguladas por las proteínas de tamaño nanométrico que las construyen colectivamente. Las herramientas biofísicas, como las pinzas ópticas, son muy adecuadas para sondear.......

Divulgaciones

Los autores no tienen nada que revelar.

Agradecimientos

Los autores desean agradecer el apoyo de R21 AG067436 (a JP y SF), T32 AG057464 (a ET) y Rensselaer Polytechnic Institute School of Science Startup Funds (a SF).

....

Materiales

NameCompanyCatalog NumberComments
10W Ytterbium Fiber Laser, 1064nmIPG PhotonicsYLR-10-1064-LP
405/488/561/640nm Laser Quad Band Set for TIRF applicationsChromaTRF89901v2
6x His Tag Antibody, Biotin ConjugateInvitrogen#MA1-21315-BTIN
Acetone, HPLC gradeFisher Scientific18-608-395
Alpha casein from bovine milkSigma1002484390
ATPFisher ScientificBP413-25
BenzonaseNovagen70746-3
Biotin-PEG-SVA-5000Laysan Bio, Inc.NC0479433
BL21 (DE3) Rosetta CellsMillipore Sigma71-400-3
CatalaseMP Biomedicals LLC190311
CFI Apo 100X/1.49NA oil immersion TIRF objectiveNikonN/A
ChloramphenicolACROS Organics227920250
Coverslip Mini-Rack, for 8 coverslipsFisher ScientificC14784
Delicate Task WipersKimberly-Clark34120
Dextrose AnhydrousFisher ScientificBP3501
D-SucroseFisher ScientificBP220-1
DTTFisher ScientificBP172-25
Ecoline Immersion Thermostat E100 with 003 BathLAUDA-Brinkmann27709
EDTAFisher ScientificBP118-500
EGTAMillipore Corporation32462-25GM
FIJI / Image Jhttps://fiji.sc/N/A
Frosted Microscope SlidesCorning12-553-1075mmx25mm, with thickness of 0.9-1.1mm
Glucose OxidaseMP Biomedicals LLC195196Type VII, without added oxygen
GMPCPPJena BiosciencesJBS-NU-405SCan be stored for several months at -20 °C and up to a year at -80 °C
Gold Seal-Cover GlassThermo Scientific3405
HEPESFisher ScientificBP310-500
ImidazoleFisher Scientific03196-500
IPTGFisher ScientificBP1755-10
Laboratory dessicatorBel-Art999320237190mm plate size
Kanamycin SulfateFischer ScientificBP906-5
KIF5A K439 (aa:1-439)-6HisGilbert Lab, RPIN/Adoi.org/10.1074/jbc.RA118.002182
KimwipeKimberley ClarkZ188956lint-free tissue
Immersion Oil, Type BCargille16484
Lens TissueThorLabsMC-5
LuNA Laser launch (4 channel: 405, 488, 561, 640nm)NikonN/A
LysozymeMP Biomedicals LLC100834
Magnesium Acetate TetrahydrateFisher ScientificBP215-500
Microfuge 18Beckman Coulter367160
MPEG-SVA MW-5000Laysan Bio, Inc.NC0107576
NeutravadinInvitrogenPI31000
Nikon Ti-E inverted microscopeNikonN/ANikon LuN4 Laser
Ni-NTA ResinThermo Scientific88221
Oligonucleotide - CACCTATTCTGAGTTTGCGCGA
GAACTTTCAAAGGC
IDTN/A
Oligonucleotide - GCCTTTGAAAGTTCTCGCGCAA
ACTCAGAATAGGTG
IDTN/A
Open-top thickwall polycarbonate tube, 0.2 mL, 7 mm x 22 mmBeckman Coulter343755
Optima-TLX UltracentrifugeBeckman Coulter361544
Paclitaxel (Taxol equivalent)Thermo Fisher ScientificP3456
PIPESACROS Organics172615000
PMSFMillipore7110-5GM
Porcine Tubulin, biotin labelCytoskeleton, Inc.T333P
Porcine Tubulin, HiLyte 647 FluorCytoskeleton, Inc.TL670Mfar red labelled
Porcine Tubulin, RhodamineCytoskeleton, Inc.TL590M
Porcine Tubulin, Tubulin ProteinCytoskeleton, Inc.T240
Potassium AcetateFisher ScientificBP364-500
Prime 95B sCMOS cameraPhotometricN/A
Quadrant Detector Sensor HeadThorLabsPDQ80A
Quikchange Lightning KitAgilent Technologies210518
Sodium BicarbonateFisher ScientificS233-500
Sodium Phosphate Dibasic AnhydrousFisher ScientificBP332-500
Square Cover GlassesCorning12-553-45018 mm x 18 mm, with thickness of 0.13-0.17 mm
Streptavidin MicrospheresPolysciences Inc.24162-1
Superose-6 ColumnGE Healthcare29-0915--96
TCEPThermo Scientific77720
TLA-100 Fixed-Angle RotorBeckman Coulter343840
Ultrasonic Cleaner (Sonicator)VevorJPS-08A(DD)304 stainless steel, 40 kHz frequency, 60 W power
Vectabond APTES solutionVector LaboratoriesSP-1800-7
Windex Powerized Glass Cleaner with Ammonia-DS.C. JohnsonSJN695237

Referencias

  1. Bentley, M., Banker, G. The cellular mechanisms that maintain neuronal polarity. Nature Reviews Neuroscience. 17 (10), 611-622 (2016).
  2. Yang, R., et al. A novel strategy to visualize vesicle-bo....

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Biolog aN mero 183microt bulosatrapamiento pticomitosismol cula nicahusomec nicaquinesinaprote nas asociadas a microt bulosmicrosop a de fluorescencia

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados