Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a methodology for isolating and identifying adipose tissue-derived mesenchymal stem cells (MSCs) from Sprague Dawley rats.

Abstract

Adult mesenchymal cells have revolutionized molecular and cell biology in recent decades. They can differentiate into different specialized cell types, in addition to their great capacity for self-renewal, migration, and proliferation. Adipose tissue is one of the least invasive and most accessible sources of mesenchymal cells. It has also been reported to have higher yields compared to other sources, as well as superior immunomodulatory properties. Recently, different procedures for obtaining adult mesenchymal cells from different tissue sources and animal species have been published. After evaluating the criteria of some authors, we standardized a methodology that is applicable to different purposes and easily reproducible. A pool of stromal vascular fraction (SVF) from perirenal and epididymal adipose tissue allowed us to develop primary cultures with optimal morphology and functionality. The cells were observed adhered to the plastic surface for 24 h, and exhibited a fibroblast-like morphology, with prolongations and a tendency to form colonies. Flow cytometry (FC) and immunofluorescence (IF) techniques were used to assess the expression of the membrane markers CD105, CD9, CD63, CD31, and CD34. The ability of adipose-derived stem cells (ASCs) to differentiate into the adipogenic lineage was also assessed using a cocktail of factors (4 µM insulin, 0.5 mM 3-methyl-iso-butyl-xanthine, and 1 µM dexamethasone). After 48 h, a gradual loss of fibroblastoid morphology was observed, and at 12 days, the presence of lipid droplets positive to oil red staining was confirmed. In summary, a procedure is proposed to obtain optimal and functional ASC cultures for application in regenerative medicine.

Introduction

Mesenchymal stem cells (MSCs) have strongly impacted regenerative medicine due to their high capacity for self-renewal, proliferation, migration, and differentiation into different cell lineages1,2. Currently, a great deal of research is focusing on their potential for the treatment and diagnosis of various diseases.

There are different sources of mesenchymal cells: bone marrow, skeletal muscle, amniotic fluid, hair follicles, placenta, and adipose tissue, among others. They are obtained from different species, including humans, mice, rats, dogs, and horses3.....

Protocol

All experimental procedures were performed following Mexican Guidelines for Animal Care, based on recommendations of the Association for Assessment and Accreditation of Laboratory Animal Care International (Norma Oficial Mexicana NOM-062-200-1999, Mexico). The protocol was reviewed, approved, and registered by the Ethics Committee for Health Research of the Instituto Mexicano del Seguro Social (R-2021-785-092).

1. Removal of adipose tissue from rats by surgical resection

Representative Results

Adipose tissue was obtained from adult Sprague Dawley rats aged 3-4 months old and with a body weight of 401 ± 41 g (geometric mean ± SD). A mean value of 3.8 g of epididymal and perirenal adipose tissue corresponded to the analysis of 15 experimental extractions. After 24 h of culture, cell populations remained adhered to the plastic surface and exhibited a heterogeneous morphology. The first passage was realized at 8 ± 2 days, with a yield of 1.4 ± 0.6 x 106 cells in a total of eight expe.......

Discussion

In the last four decades since the discovery of MSCs, several groups of researchers have described procedures for obtaining MSCs from different tissues and species. One of the advantages of using rats as an animal model is their easy maintenance and rapid development, as well as the ease of obtaining MSCs from adipose tissue. Different tissue sources have been described for obtaining ASCs, such as visceral, perirenal, epididymal, and subcutaneous fat12,13,

Acknowledgements

The authors are grateful to the Mexican Institute of Social Security (IMSS) and Children's Hospital of Mexico, Federico Gomez (HIMFG) and the Bioterio staff of the IMSS Research Coordination, for the support given to carry out this project. We thank the National Council of Science and Technology for the AOC (815290) scholarship and Antonio Duarte Reyes for the technical support in the audiovisual material.

....

Materials

NameCompanyCatalog NumberComments
Amphotericin BHyCloneSV30078.01
Analytical balanceSartoriusAX224
Antibody anti- CD9 (C-4)Santa CruzSc-13118
Antibody anti-CD34 (C-18)Santa CruzSc-7045
Antibody anti-C63Santa CruzSc-5275
Antibody anti-Endoglin/CD105 (P3D1) Alexa Fluor 594 Santa CruzSc-18838A594
Antibody anti-CD31/PECM-1 Alexa Fluor 680Santa CruzSc-18916AF680
Antibody Goat anti-rabitt IgG (H+L) Cy3 NovusNB 120-6939
Antibody Donkey anti-goat IgG (H+L) DyLight 550 InvitrogenSA5-10087
Antibody anti-mouse IgG FITC conjugated goat F (ab´)RD Systems.No. F103B
Bottle Top Filter SterileCORNING10718003
Cell and Tissue Culture FlasksBIOFIL170718-312B
Cell Counter Bright-Line Hemacytometer with cell counting chamber slidesSIGMA Aldrich Z359629
Cell wells: 6 well with LidCORNING25810
Centrifuge conical tubesHeTTICHROTANA460R
Centrifuge eppendorf tubesFischer ScientificM0018242_44797
Collagen IV WorthingtonLS004186
CryovialSPL Life Science43112
Culture tubesGreiner Bio-One 191180
CytExpert 2.0Beckman CoulterFree version
CytoFlex LX cytometerBeckman CoulterFLOW-2463VID03.17
DMEMGIBCO31600-034
DMSOSIGMA Aldrich 67-68-5
DraQ7 DyeThermo Sc. D15106
EDTASIGMA Aldrich60-00-4
Eosin yellowishHycel300
Ethanol 96%Baker64-17-5
Falcon tubes 15 mLGreiner Bio-One 188271
Falcon tubes 50 mLGreiner Bio-One 227261
Fetal Bovine Serum CORNING35-010-CV
GelatinSIGMA Aldrich128111163
GentamicinGIBCO15750045
Glycerin-High PurityHerschi Trading 56-81-5
HematoxylinAMRESCO 0701-25G
Heracell 240i CO2 Incubator Thermo Sc.50116047
Ketamin Pet (Ketamine clorhidrate)ArandaSV057430
L-Glutamine GIBCO/ Thermo Sc. 25030-081
LSM software Zen 2009 V5.5Free version
Biological Safety Cabinet Class IINuAire12082100801
Epifluorescent microscope Zeiss Axiovert 100M21.0028.001
Inverted microscope Olympus CK40CK40-G100
Non-essential amino acids 100XGIBCO11140050
Micro tubes 2 mL Sarstedt 72695400
Micro tubes 1,5 mLSarstedt 72706400
Micropipettes 0.2-2 μLFinnpipetteE97743
Micropipettes 2-20 μLFinnpipetteF54167
Micropipettes 20-200 μLFinnpipetteG32419
Micropipettes 100-1000 μLFinnpipetteFJ39895
Nitrogen tank liquidTaylor-Wharton681-021-06
ParaformaldehydeSIGMA AldrichSLBC3029V
Penicillin / Streptomycin GIBCO/ Thermo Sc. 15140122
Petri dish Cell cultureCORNING Inc480167
Pipet TipsAxygen Scientific301-03-201
Pisabental (pentobarbital sodium)PISA AgropecuariaQ-7833-215
Potassium chloride J.T.Baker7447-40-7
Potassium Phosphate DibasicJ.T Baker2139900
S1 Pipette FillersThermo Sc9531
Serological pipette 5 mLPYREXL010005
Serological pipette 10 mLPYREXL010010
Sodium bicarbonateJ.T Baker144-55-8
Sodium chloride J.T.Baker15368426
Sodium Phosphate Dibasic AnhydrousJ.T Baker7558-79-4
Sodium pyruvateGIBCO BRL11840-048
Syringe Filter SterileCORNING431222
SpectrophotometerPerkinElmer Lambda 25L6020060
Titer plate shakerLAB-LINE1250
Transfer pipetsSamco/Thermo Sc728NL
Trypan Blue stainGIBCO1198566
Trypsin From Porcine PancreasSIGMA Aldrich102H0234
Tween 20SIGMA Aldrich9005-64-5
Universal Blocking Reagent 10xBioGenexHK085-GP
Xilapet 2% (xylazine hydrochloride)Pet's PharmaQ-7972-025

References

  1. Djian, P., Roncari, A. K., Hollenberg, C. H. Influence of \anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. The Journal of Clinical Investigation. 72 (4), 1200-1208 (1983).
  2. Greenwood, M. R., Hirsch, J.

Explore More Articles

Mesenchymal Stem CellsAdipose derived Mesenchymal Stem CellsSprague Dawley RatsCellular CommunicationParacrine FunctionPancreatic RegenerationDiabetesCell TherapiesSecretomeMiRNAsOxidative StressCell DifferentiationSelf renewalMigrationProliferationStromal Vascular FractionFlow CytometryImmunofluorescence

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados