Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes how to reconstruct mitochondrial cristae to achieve 3D imaging with high accuracy, high resolution, and high throughput.

Abstract

Understanding the dynamic features of the cell organelle ultrastructure, which is not only rich in unknown information but also sophisticated from a three-dimensional (3D) perspective, is critical for mechanistic studies. Electron microscopy (EM) offers good imaging depth and allows for the reconstruction of high-resolution image stacks to investigate the ultrastructural morphology of cellular organelles even at the nanometer scale; therefore, 3D reconstruction is gaining importance due to its incomparable advantages. Scanning electron microscopy (SEM) provides a high-throughput image acquisition technology that allows for reconstructing large structures in 3D from the same region of interest in consecutive slices. Therefore, the application of SEM in large-scale 3D reconstruction to restore the true 3D ultrastructure of organelles is becoming increasingly common. In this protocol, we suggest a combination of serial ultrathin section and 3D reconstruction techniques to study mitochondrial cristae in pancreatic cancer cells. The details of how these techniques are performed are described in this protocol in a step-by-step manner, including the osmium-thiocarbohydrazide-osmium (OTO) method, the serial ultrathin section imaging, and the visualization display.

Introduction

Mitochondria are one of the most important organelles in the cell. They serve as the central hub of cellular bioenergetics and metabolism1,2 and play a critical role in cancer3. Pancreatic cancer (PC) is one of the most difficult cancers4 to treat due to its rapid spread and high mortality rate. Mitochondrial dysfunction, which is mainly caused by changes in the mitochondrial morphology3,5,6,7, has been linked to the disease mechanisms ....

Protocol

1. Material preparation

  1. Culture 2 x 106 Panc02 cells in 12 mL of DMEM medium (10% fetal bovine serum and 100 U/mL of penicillin-streptomycin), and maintain at 37 °C and 95% humidity in an atmosphere of 5% carbon dioxide and 95% air for 48 h.
  2. Collect Panc02 cells, centrifuge at 28 x g for 2 min, and then discard the supernatant. Ensure that the sample is of an appropriate size (1 x 107 cells), as otherwise, the following fixation and dehydration st.......

Representative Results

During cell culture (Figure 1A), we first divided the pancreatic cancer cells into a control group cultured with complete culture medium, a (1S,3R)-RSL348 (RSL3, a ferroptosis activator, 100 nM) group, and an RSL3 (100 nM) plus ferrostatin-149 (Fer-1, a ferroptosis inhibitor, 100 nM) group. Through the above experimental steps, the scanning electron microscope acquired 38 (Supplementary Figure 1), 43 (Supplementary.......

Discussion

The method presented here is a useful step-by-step guide for applying the 3D reconstruction technique, which involves applying electron microscopy and image processing technology to the stacking and segmentation of 2D tomographic images generated from serial ultrathin sections. This protocol highlights a limitation of 2D images that can be addressed by 3D visualization of the organelle ultrastructure, which has the advantages of strong reproducibility of the structures at a high-resolution level and higher accuracy. More.......

Acknowledgements

This research was supported by Natural Science Foundation of Zhejiang Province grants (Z23H290001, LY19H280001); National Natural Science Foundation of China grants (82274364, 81673607, and 81774011); as well as the Public Welfare Research Project of Huzhou Science and Technology Grant (2021GY49, 2018GZ24). We appreciate the great help, technical support, and experimental support from the Public Platform of Medical Research Center, Academy of Chinese Medical Science, Zhejiang Chinese Medical University.

....

Materials

NameCompanyCatalog NumberComments
(1S,3R)-RSL3MCEHY-100218A
AcetoneSIGMA179124
AmiraVisage Imaging
Aspartic acidMCEHY-42068
Dulbecco's modified Eagle’s mediumGibco11995115
EthanolMerck100983
Ferrostatin-1MCEHY-100579
Fetal bovine serumGibco10437010
Field emission scanning electron microscopeHITACHISU8010
GlutaraldehydeAlfa AesarA10500.22
Lead nitrateSANTA CRUZsc-211724
Osmium TetroxideSANTA CRUZsc-206008B
Panc02European Collection of Authenticated Cell Cultures 98102213
Penicillin-streptomycinBiosharpBL505A
Phosphate Buffered SalineBiosharpBL302A
Pon 812 Epoxy resinSPI CHEMGS02660
Potassium ferrocyanideMacklinP816416
ThiocarbohydrazideMerck223220
UltramicrotomeLEICAEMUC7
Uranyl AcetateRHAWNR0329292020.2

References

  1. Gonidi, M., et al. Mitochondrial UCP4 and bcl-2 expression in imprints of breast carcinomas: Relationship with DNA ploidy and classical prognostic factors. Pathology, Research and Practice. 207 (6), 377-382 (2011).
  2. Youle, R. J., vander Bliek, A. M.

Explore More Articles

3D ReconstructionElectron MicroscopyUltrastructureMitochondriaPancreatic CancerOrganelle MorphologyOTO MethodSerial SectioningVisualization

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados