Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
La diversidad lipídica de la membrana en estructura y composición es un importante contribuyente a los procesos celulares y puede ser un marcador de enfermedad. Las simulaciones de dinámica molecular nos permiten estudiar las membranas y sus interacciones con biomoléculas a resolución atomística. Aquí, proporcionamos un protocolo para construir, ejecutar y analizar sistemas de membranas complejos.
Los lípidos son componentes estructurales de las membranas celulares; Las especies de lípidos varían entre los orgánulos celulares y entre los organismos. Esta variedad da como resultado diferentes propiedades mecánicas y estructurales en la membrana que impactan directamente en las moléculas y procesos que ocurren en esta interfaz. La composición lipídica es dinámica y puede servir para modular los procesos de señalización celular. Los enfoques computacionales se utilizan cada vez más para predecir las interacciones entre biomoléculas y proporcionar información molecular a los observables experimentales. La dinámica molecular (MD) es una técnica basada en la mecánica estadística que predice el movimiento de los átomos en función de las fuerzas que actúan sobre ellos. Las simulaciones de MD se pueden utilizar para caracterizar la interacción de biomoléculas. Aquí, presentamos brevemente la técnica, describimos los pasos prácticos para principiantes que estén interesados en simular bicapas lipídicas, demostramos el protocolo con un software amigable para principiantes y discutimos alternativas, desafíos y consideraciones importantes del proceso. En particular, enfatizamos la relevancia del uso de mezclas lipídicas complejas para modelar una membrana celular de interés para capturar los entornos hidrofóbicos y mecánicos apropiados en la simulación. También discutimos algunos ejemplos en los que la composición y las propiedades de la membrana modulan las interacciones de las bicapas con otras biomoléculas.
Los lípidos son los principales constituyentes de las membranas, que proporcionan límites para las células y permiten la compartimentación intracelular 1,2,3. Los lípidos son anfifílicos, con un grupo de cabeza polar y dos colas de ácidos grasos hidrofóbicos; Estos se autoensamblan en una bicapa para minimizar el contacto de las cadenas hidrofóbicas con el agua 3,4. Varias combinaciones de grupos de cabezas hidrofílicas y colas hidrofóbicas dan como resultado diferentes clases de lípidos en las membranas biológicas, c....
1. Construcción de las coordenadas del sistema
Para ilustrar el uso del protocolo y los resultados que se pueden obtener, se discute un estudio comparativo de modelos de membrana para el retículo endoplásmico (RE). Los dos modelos de este estudio fueron: (i) el modelo PI, que contiene las cuatro principales especies lipídicas encontradas en el RE, y (ii) el modelo PI-PS, que añadió las especies lipídicas aniónicas de fosfatidilserina (PS). Estos modelos fueron utilizados posteriormente en un estudio de una proteína viral y cómo interactúa con la membrana, e.......
Las técnicas experimentales permiten visualizar biomoléculas de alta resolución utilizando criomicroscopía electrónica (crio-EM)58, técnicas de fluorescencia y microscopía de fuerza atómica (AFM)59. Sin embargo, es difícil captar la interacción y la dinámica de las interacciones moleculares que subyacen a las vías biológicas, la patogénesis de la enfermedad y la administración terapéutica a nivel atómico o de aminoácidos. Aquí, se discutieron las capacida.......
Los autores no tienen intereses contrapuestos que revelar.
Los autores agradecen a Jinhui Li y Ricardo X. Ramírez por sus trayectorias de simulación y discusiones durante la redacción de este manuscrito. O.C. contó con el apoyo de la Beca Presidencial de la Universidad de Buffalo y la Iniciativa para Maximizar la Capacitación en Desarrollo Estudiantil del Instituto Nacional de Salud 1T32GM144920-01 otorgada a Margarita L. Dubocovich (PI).
....Name | Company | Catalog Number | Comments |
Anaconda3 | Anaconda Inc (Python & related libraries) | N/A | |
CHARMM-GUI.org | Im lab, Lehigh University | N/A | |
GROMACS | GROMACS development team | N/A | |
Linux HPC Cluster | UB CCR | N/A | |
MATLAB | MathWorks | N/A | |
VMD | Theoretical and Computational Biophysics Group | N/A |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoExplorar más artículos
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados