Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Ex vivo live imaging is a powerful technique for studying the dynamic processes of cellular movements and interactions in living tissues. Here, we present a protocol that implements two-photon microscopy to live track dental epithelial cells in cultured whole adult mouse incisors.

Abstract

The continuously growing mouse incisor is emerging as a highly tractable model system to investigate the regulation of adult epithelial and mesenchymal stem cells and tooth regeneration. These progenitor populations actively divide, move, and differentiate to maintain tissue homeostasis and regenerate lost cells in a responsive manner. However, traditional analyses using fixed tissue sections could not capture the dynamic processes of cellular movements and interactions, limiting our ability to study their regulations. This paper describes a protocol to maintain whole mouse incisors in an explant culture system and live-track dental epithelial cells using multiphoton timelapse microscopy. This technique adds to our existing toolbox for dental research and allows investigators to acquire spatiotemporal information on cell behaviors and organizations in a living tissue. We anticipate that this methodology will help researchers further explore mechanisms that control the dynamic cellular processes taking place during both dental renewal and regeneration.

Introduction

Over the past two decades, the mouse incisor has emerged as an invaluable platform for investigating the principles of adult stem cell regulation and tooth regeneration1,2. The mouse incisor grows continuously and renews itself throughout the animal's life. It does so by maintaining both epithelial and mesenchymal stem cells, which can self-renew and differentiate into different cell types of the tooth1,2. While dental epithelial stem cells give rise to ameloblasts, which secrete the enamel matrix, dental mesenchymal stem cells give rise to odontob....

Protocol

All mice were maintained in pathogen-free animal facilities at the University of California Los Angeles (UCLA) or the Hebrew University of Jerusalem (HUJI). All experiments involving mice were performed according to regulations and protocols approved by the respective Institutional Animal Care and Use Committee (IACUC) (ARC-2019-013; UCLA) or (MD-23-17184-3; HUJI). A general workflow of the experimental steps is shown in Figure 2A. See the Table of Materials for details rela.......

Representative Results

The apical region of the adult mouse incisor is encased within the mandible (Figure 1) and hence, not directly accessible for visualizing and live-tracking the progenitor cells residing within the growth region. Therefore, we have developed a method to extract the whole incisor from the jawbone and maintain it in an explant culture system for two-photon timelapse microscopy (Figure 2). Here we describe representative results that capture the dynamic process of c.......

Discussion

Live tissue imaging is an important technique that allows us to study the dynamic processes and behaviors of cells when they are maintained in their niche environment41. Ideally, live imaging is performed in vivo with high spatiotemporal resolution. However, in vivo imaging for mammalian organs can be challenging due to tissue inaccessibility, optical opaqueness, and difficulty in immobilizing the animal or the organ for a prolonged period42. Tissue explan.......

Acknowledgements

We acknowledge the UCLA Advanced Light Microscopy/Spectroscopy Laboratory and Leica Microsystems Center of Excellence at the California NanoSystems Institute (RRID:SCR_022789) for providing two-photon microscopy. AS was supported by ISF 604-21 from the Israel Science Foundation. JH was supported by R03DE030205 and R01DE030471 from the NIH/NIDCR. AS and JH were also supported by grant 2021007 from the United States-Israel Binational Science Foundation (BSF).

....

Materials

NameCompanyCatalog NumberComments
24 well, flat bottom tissue culture plateOlympus plastics25-107
25x HC IRAPO motCORR water dipping objectiveLeica11507704
Ascorbic acid (Vitamin C)Acros Organics352685000
D-(+)-Glucose bioxtra Sigma AldrichG7528
Delta T system Bioptechs0420-4Including temperature control, culture dishes, and perfusion setup
Dissection microscope- LEICA S9ELeicaLED300 SLI
DMEM/F12Thermo Scientific11039047Basal media without phenol red
Feather surgical blade (#15)Feather72044-15
Fine forcepsF.S.T11252-23
Glutamax Thermo Scientific35050-061Glutamine substitute
Leica SP8-DIVE equipped with a 25X HC IRAPO motCORR water dipping objective Leican/a
low-melting agaroseNuSieve50080
non-essential amino acids (100x)Thermo Scientific11140-050
penicillin–streptomycinThermo Scientific1514012210,000 U/mL 
Petri dishGen Clone32-107G90 mm 
Rat serumValley BiomedicalAS3061SCProcessed for live imaging
Razor blade #9VWR55411-050
Scalpel handleF.S.T10003-12
ScissorsF.S.T37133
serrated forcepsF.S.T11000-13
spring scissorsF.S.T91500-09

References

  1. Yu, T., Volponi, A. A., Babb, R., An, Z., Sharpe, P. T. Stem cells in tooth development, growth, repair, and regeneration. Current Topics in Developmental Biology. 115, 187-212 (2015).
  2. Jing, J., et al.

Explore More Articles

Ex Vivo Live ImagingCell DivisionCell MovementMouse Dental RenewalIncisorAdult Stem CellEpithelial CellsMesenchymal CellsTissue HomeostasisRegenerationMultiphoton Time lapse MicroscopyExplant Culture

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados