Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados Representativos
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Este protocolo describe el marcaje de fluorescencia personalizado basado en anticuerpos y la inyección en embriones tempranos de Drosophila para permitir la obtención de imágenes en vivo de proteínas de baja abundancia o modificaciones postraduccionales que son difíciles de detectar utilizando los enfoques tradicionales de GFP/mCherry-tag.

Resumen

La visualización de proteínas en células vivas utilizando GFP (proteína fluorescente verde) y otras etiquetas fluorescentes ha mejorado en gran medida la comprensión de la localización, la dinámica y la función de las proteínas. En comparación con la inmunofluorescencia, las imágenes en vivo reflejan con mayor precisión la localización de proteínas sin posibles artefactos que surjan de la fijación tisular. Es importante destacar que las imágenes en vivo permiten la caracterización cuantitativa y temporal de los niveles y la localización de proteínas, lo que es crucial para comprender los procesos biológicos dinámicos, como el movimiento o la división celular. Sin embargo, una limitación importante de los enfoques de marcado fluorescente es la necesidad de niveles de expresión de proteínas suficientemente altos para lograr una visualización exitosa. En consecuencia, no se pueden detectar muchas proteínas fluorescentes marcadas endógenamente con niveles de expresión relativamente bajos. Por otro lado, la expresión ectópica mediante promotores virales puede conducir a veces a una mala localización de proteínas o a alteraciones funcionales en contextos fisiológicos. Para abordar estas limitaciones, se presenta un enfoque que utiliza la detección de proteínas mediadas por anticuerpos de alta sensibilidad en embriones vivos, esencialmente realizando inmunofluorescencia sin necesidad de fijación tisular. Como prueba de principio, el receptor Notch marcado con GFP endógeno que apenas es detectable en embriones vivos se puede visualizar con éxito después de la inyección de anticuerpos. Además, este enfoque se adaptó para visualizar las modificaciones postraduccionales (PTM) en embriones vivos, lo que permitió detectar cambios temporales en los patrones de fosforilación de tirosina durante la embriogénesis temprana y reveló una nueva subpoblación de fosfotirosina (p-Tyr) debajo de las membranas apicales. Este enfoque puede modificarse para adaptarse a otros anticuerpos específicos de proteínas, específicos de etiquetas o específicos de PTM y debe ser compatible con otros organismos o líneas celulares modelo susceptibles de inyección. Este protocolo abre nuevas posibilidades para la obtención de imágenes en vivo de proteínas de baja abundancia o PTM que antes eran difíciles de detectar con los métodos tradicionales de marcado fluorescente.

Introducción

La inmunofluorescencia es una técnica fundamental de la biología celular moderna desarrollada originalmente por Albert Coons, que permite la detección de moléculas en sus compartimentos celulares nativos y la caracterización de las composiciones moleculares de orgánulos o maquinarias subcelulares1. Junto con las manipulaciones genéticas, la inmunofluorescencia ayuda a establecer el concepto ahora bien aceptado de que la localización de proteínas es esencial parasu función. Aparte de los anticuerpos primarios específicos y los colorantes fluorescentes brillantes, el éxito de esta técnica se basa en un proceso preliminar l....

Protocolo

Los experimentos se llevaron a cabo de acuerdo con las directrices y la aprobación de la Facultad de Ciencias de la Vida de la Universidad SUSTech. El organismo utilizado es Drosophila melanogaster, y los genotipos son Notch-Knockin-GFP (Cromosoma X) y Sqh-sqh-GFP (Cromosoma II), generosamente proporcionados por los laboratorios del Dr. François Schweisguth (Instituto Pasteur) y la Dra. Jennifer Zallen (Instituto Sloan Kettering), respectivamente. Si bien este protocolo se centra principalmente en aspectos del marcaje de anticuerpos y las imágenes en vivo, consulte los informes publicados para obtener descripciones más detalladas de la recolección e inyección....

Resultados Representativos

Para demostrar las ventajas del método de inyección de anticuerpos sobre las imágenes vivas basadas en marcadores fluorescentes o la inmunofluorescencia, se proporcionan dos estudios de caso que caracterizan la localización dinámica de un receptor transmembrana de baja abundancia, Notch, y un tipo de modificación postraduccional llamada fosforilación de tirosina en embriones vivos.

La actividad de señalización de Notch juega un papel importante en la determinación del destino celular.......

Discusión

Este procedimiento presentado describe el método especializado de marcaje de fluorescencia con anticuerpos personalizados y la posterior inyección en embriones de Drosophila en etapa temprana. Esta técnica facilita la visualización en tiempo real de proteínas o modificaciones postraduccionales que existen en pequeñas cantidades y que suelen ser difíciles de observar a través de los métodos convencionales de marcado GFP/mCherry.

Se debe tener precaución al extender este méto.......

Divulgaciones

Los autores no tienen conflictos de intereses que declarar.

Agradecimientos

Nos gustaría agradecer a la Dra. Jennifer A. Zallen por proporcionar la línea Sqh-GFP Drosophila y el apoyo para el desarrollo inicial de esta técnica, y al Dr. Francois Schweisguth por proporcionar la línea Notch-GFP Drosophila . Este trabajo contó con el apoyo financiero de la Fundación Nacional de Ciencias Naturales de China (32270809) para H.H.Yu, el generoso apoyo financiero y de personal de la Escuela de Ciencias de la Vida, SUSTech, y el financiamiento a Y. Yan de la Comisión de Innovación Científica y Tecnológica de Shenzhen/JCYJ20200109140201722.

....

Materiales

NameCompanyCatalog NumberComments
AgaroseSangon Biotech A620014 
Alexa Fluor 594 Antibody Labeling KitInvitrogen A20185Purification column from step 1.6 is included in this kit
Biological MicroscopeSOPTOPEX20Eyepiece lens: PL 10X/20. Objective lens: 10x/0.25
BleachClorox®
Borosilicate Glass CapillariesWorld Precision InstrumentsTW100F-4
CentrifugeEppendorf5245
Cell StrainerFALCON352350
Desiccation chamber LOCK&LOCKHSM8200320ml
Dissecting MicroscopeMshotMZ62Eyepiece lens: WF10X/22mm.
Double-sided TapeScotch665
Fine Super TweezerVETUSST-14
Fisherbrand™ Cover Glasses: RectanglesFisherbrand12-545F
Fisherbrand™ Superfrost™ Plus Microscope SlidesFisherbrand12-550-15
ForcepVETUS33A-SA
Halocarbon oil 27Sigma-AldrichH8773-100ML
Halocarbon oil 700Sigma-AldrichH8898-100ML
HeptaneSigma-AldrichH2198-1LHeptane glue is made of double-sided tape immersed in heptane
Dehydration reagent TOKAI1-7315-01Fill to 90% volume of the dessication chamber
Manual MicromanipulatorWorld Precision InstrumentsM3301R
Micropipette pullerWorld Precision InstrumentsPUL-1000Procedure: step 1, Heat: 290, Force:300, Distance:1.00, Delay:50.
Step 2, Heat: 290, Force:300, Distance:2.21, Delay:50 
Pneumatic picopumpWorld Precision InstrumentsPV 830Eject: 20 psi;  Range: 100ms; Duration: timed
PY20Santa CruzSC-508
Square petri dishesBiosharpBS-100-SD
GFP nanobodyChromotekgt

Referencias

  1. Coons, A. H. The beginnings of immunofluorescence. Journal of Immunology (Baltimore, Md). 87, 499-503 (1961).
  2. Arthur, G., et al. Harnessing the power of the antibody. The Lancet Respiratory Medicine. 4 (3), 181-182 (2016).
  3. I....

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Biolog a del DesarrolloN mero 203

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados