Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol for applying nanosecond pulse electric field (nsPEF) to stimulate Schwann cells in vitro. The synthesis and secretion ability of relevant factors and cell behavior changes validated the successful stimulation using nsPEF. The study gives a positive view of the peripheral nerve regeneration method.

Abstract

Schwann cells (SCs) are myelinating cells of the peripheral nervous system, playing a crucial role in peripheral nerve regeneration. Nanosecond Pulse Electric Field (nsPEF) is an emerging method applicable in nerve electrical stimulation that has been demonstrated to be effective in stimulating cell proliferation and other biological processes. Aiming to assess whether SCs undergo significant changes under nsPEF and help explore the potential for new peripheral nerve regeneration methods, cultured RSC96 cells were subjected to nsPEF stimulation at 5 kV and 10 kV, followed by continued cultivation for 3-4 days. Subsequently, some relevant factors expressed by SCs were assessed to demonstrate the successful stimulation, including the specific marker protein, neurotrophic factor, transcription factor, and myelination regulator. The representative results showed that nsPEF significantly enhanced the proliferation and migration of SCs and the ability to synthesize relevant factors that contribute positively to the regeneration of peripheral nerves. Simultaneously, lower expression of GFAP indicated the benign prognosis of peripheral nerve injuries. All these outcomes show that nsPEF has great potential as an efficient treatment method for peripheral nerve injuries by stimulating SCs.

Introduction

Each year, millions of people are affected by nerve injuries involving both the peripheral nervous system (PNS) and the central nervous system (CNS)1. Studies have demonstrated that the axonal repair capacity of the CNS is quite limited after nerve injuries, while the PNS shows enhanced capacity due to the significant plasticity of SCs2. Nevertheless, achieving complete regeneration after peripheral nerve injuries remains arduous and continues to pose a significant challenge to human health3,4. Nowadays, autografts have remained a common treatment despite the dra....

Protocol

1. Thawing of cryopreserved RSC96 cells

  1. Thaw the cryovial containing 1 mL of cell suspension by rapidly shaking it in a 37 °C water bath, and then add it to a centrifuge tube containing 4-6 mL of complete culture medium and mix well.
  2. Centrifuge at 1000 x g for 3-5 min, discard the supernatant and resuspend the cells in 3 mL of complete culture medium.
  3. Add the cell suspension to a culture flask (or dish) containing 6-8 mL of complete culture medium and incubat.......

Representative Results

Low-intensity pulsed electric fields stimulate cell proliferation
According to the CCK-8 assay, the proliferation rate of RSC96 in the 5 kV/cm group was significantly faster than that of the control group cells. However, as the parameters increased (20 kV/cm and 40 kV/cm), the proliferation rate was unstable, even lower than that of the control group. The cell proliferation rate of RSC96 cells in the 40 kV/cm group was significantly lower than the control and 5 kV/cm groups, showing a significant s.......

Discussion

In recent years, the application of nsPEF has experienced boosting growth, as reported. nsPEF has a highly targeted effect on only the desired area, providing enough energy to treat without causing additional thermal damage, making it safer for the human body28. These characteristics give it promising translational prospects in tumor treatment and nerve regeneration. However, some studies have proposed some limitations of nsPEF. Compared with materials research, ES is constrained by external power.......

Acknowledgements

This work was funded by the National Key Scientific Instrument and Equipment Development Project (NO.82027803).

....

Materials

NameCompanyCatalog NumberComments
Antifade mounting mediumWuhan Xavier Biotechnology Co., LTDG1401
Anti-GFAP Mouse mAbWuhan Xavier Biotechnology Co., LTDGB12100-100
Anti-Neurofilament heavy polypeptide Mouse mAbWuhan Xavier Biotechnology Co., LTDGB12144-100
Anti-S100 beta Mouse mAbWuhan Xavier Biotechnology Co., LTDGB14146-100
BSAWuhan Xavier Biotechnology Co., LTDGC305010
CoverslipJiangsu Shitai experimental equipment Co., LTD10212432C
CY3-labeled goat anti-mouse IgGWuhan Xavier Biotechnology Co., LTDGB21302
DAPI Staining ReagentWuhan Xavier Biotechnology Co., LTDG1012
Decolorizing shakerWuhan Xavier Biotechnology Co., LTDDS-2S100
High Voltage Power Supply for nsPEFMatsusada Precision Inc.AU-60P1.6-L
Histochemical penWuhan Xavier Biotechnology Co., LTDG6100
Membrane breaking liquidWuhan Xavier Biotechnology Co., LTDG1204
Microscope slideWuhan Xavier Biotechnology Co., LTDG6012
Palm centrifugeWuhan Xavier Biotechnology Co., LTDMS6000
PBS powderedWuhan Xavier Biotechnology Co., LTDG0002
PipetteWuhan Xavier Biotechnology Co., LTD
Positive fluorescence microscopeNikon, JapanNIKON ECLIPSE C1
Rabbit Anti-SOX10/AF488 Conjugated antibodyBeijing Bioss Biotechnology Co., LTDBS-20563R-AF488
RSC96 Schwann cellsWuhan Xavier Biotechnology Co., LTDSTCC30007G-1
scanister3DHISTECHPannoramic MIDI
Special cable for nsPEFTimes Microwave SystemsM17/78-RG217
Turbine mixerWuhan Xavier Biotechnology Co., LTDMV-100

References

Explore More Articles

Schwann CellsNanosecond Pulsed Electric FieldNsPEFPeripheral Nerve RegenerationCell ProliferationCell MigrationNeurotrophic FactorsMyelination RegulatorsGFAP

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados